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FOREWORD

The five popers included in this technical report constitute the original

manuscripts submitted to Human Fuctors for regular journal publication. Hopefully,

any inconsistencies and errors that may be present will be corrected before any of

the articles appear in print.

Although each paper was purposefully written as a complete independent

paper, all of the papers taken together summarize much of the research effort to

date on one task of a current contract with the Air Force Office of Scientific

Research. This project is one of eight tasks in a contract titled "The Enhancement

of Human Effectiveness in System Design, Training, and Operation." Four of the

tasks are in the area of pilot selection, training, and performance assessment, and

four deal with avionics system design principles.

The papers have been arranged in this report to show the sequence of the

research effort. The first manuscript, Clark and Williges (1972), is an introductory

paper. Based on an article published by Williges and Simon (1971), the purpose of

the Clark and Williges (1972) paper is to introduce the Response Surface Methodology

(RSM) central-composite design and to consider various design modifications necessary

fcr using RSM central-composite designs in human performance research. The remaining

four papers both illustrate the use of RSM central-composite designs for developing

multiple regression prediction equctions and empirically test some of the design

modifications suggested by Clark and Williges (1972).

The Williges and Baron (1972) manuscript reports a between-subjects, RSM central-

composite design for human transfer of training assessment and demonstrates the advantage

of replicating the design across all data points. Reporting a within-subject, RSM

rentral-composite design, the Will;ges and North (1972) paper compares collapsed

and uncollapsed data analyses in terms of sensitivity and predictive validity as

determined through cross-validation.

The last two papers, Mills and Williges (.972) and Williges and Mills (1972),

aOe concemed with research sponsored by the Aerospace Medical Research Laboratory,
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Aerospace Medical Division, Air Force Systems Command, Wright-Patterson AFB

I and appear as AMRL Technical Reports. Additional support for data analyses was

provided by the Air Force Office of Scientific Research on the current contract

with the Aviation Research Laboratory of the Institute of Aviation, University of

Illinois at Urbana-Champaign. The Mills and Williges (1972) paper illustrates

a rather complex use of a within-subject, RSM central-composite design to predict

performance in a single-operator simulated surveillance system. The last paper,

\illiges and Mills (1972), evaluates the predictive validity of the multiple regression

equations of the previous study in terms of predictive accuracy to other data points

within the range of the variables originally tested.

A number of people were quite helpful in the preparation of these papers.

Specific acknowledgments to many of them are provided at the end of each manuscript.

Five additional people, however, deserve special mention. Dr. Stanley N. Roscoe

and Dr. Melvin J. Warrick provided valuable comments on different aspects of some

of the papers. Mrs. Tatie Wrobel proofread and made additional editorlal comments;I
on all the papers. Mr. Morris Maitland diligently prepared all the final figures.

1 And, Mrs. Carolyn Gardner was able to remain in good spirits after expertly typing

and retyping each manuscript a countless number of times.
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Clark and Williges I

Response Surface Methodology Central-Composite Design Modifications for

Human Performance Research

CHRISTINE CLARK and ROBERT C. WILLIGES, University of Illinois at Urbana-

Champaign

Selected Respnse Surface Methodology (RSM) designs that are viable

alternatives in human performance research are discussed. Two major RSM designs

that are variations of the basic, blocked, central-composite design have been

selected for consideration: 1) central-composite designs with multiple observations

at only the center point, 2) central-composite designs with multiple observations

at each experimental point. Designs of the latter type are further categorized as:

a) designs which collapse data across ali observations at the some experimental

point; b) between-subjects designs in which no subject is observed more than once,

and observations at each experimental point may be multiple and unequal or

multiple and equal; and c) within-subject designs in which each subject is observed

only once at each experimental point. The ramifications of these designs are

discussed in terms of various criteria such os rotatability, orthogonal blocking, and

estimates of error.

I
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Clark and Williges 2

INTRODUCTION

Frequently, an investigator's aim is to determine a quantitative relation-

ship between human performance and one or more system parameters. Among the

most immediate benefits accruing from such a known, quantitative relationship are

the ability to predict performance levels corresponding to given levels of the system

variables and, conversely, the ability to determine the system variable levels

necessary to maintain a designated performance level. One particularly promising

procedure for gathering the data needed to make these and other quantitative

determinations is Response Surface Methodology (RSM), originally introduced by

Box and Wilson (1951). Unlike traditional factorial analysis of variance designs,

RSM focuses primarily on determining the functional relationship that exists

between the response and specified continuous, quantitative factors, rather than

merely determining the significance of the various factors.

In addition to approximating the relationship between performance and

factors in the form of a prediction equation, RSM advances a variety of expeli-

mental designs ro achieve that estimate as efficiently and economically as possible.

When using factorial designs, the investigator is often forced by practical consider-

ations to limit the number of factors studied to even less than the number that he

believes has a critical effect on performance. In such a case he must conduct

multiple studies, each of which investigates only a few factors at any one time.

This resuits in an unrealistic view of any system in which factors are not indepen-

dent of one another. By allowing the investigator to consider larger numbers of

factors within a single study, RSM proves a valuable investigatory tool. Through

strategic sampling of data points, RSM also provides the most essential information

and allows one to dec~de whether or not the collection of additional data is

merited.

Most RSM designs are special cases of the Box and Wilson (1951) central-

J composite design. Although this des*jn was originally developed for application

in chemical research, its utility in psychological research, especially in studies

I
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of human performance, has been documented (Meyer, 1963; Simon, 1970; Williges

and Simon, 1971). It is not unreasonable, however, to anticipate the need for

some modification in that basic design to make it more appropriate for research

involving human subjects. The purpose of this paper is to suggest several appropri-

ate design modifications that attermpt to retain as many of the positive traits of the

RSM central-composite design as possible. Before discussing these modifications,

a description of ceniral-composite designs is necessary.

CENTRAL-COMPOSITE DESIGNS

Suppose that an investigator were interested in predicting radar target

detection, Y, given level s cf display resolution, X 1, visual angle, X2 , and

random noise, X3 . Further suppose that the true relationship between target

detection and the three display-related variables could be expressed as a function

f of the levels of X1 , X2 , and X3 . That is, in symbolic form

Y= f (XIV X2.. Xm1) 2 e,

where m = 3; X., i = 1, 2, 3, is tIhe level of the ith display-ielated variable; e is

the associated experimental error; and Y is the corresponding level of target

detection. The particular function which describes the relationship in question is

called the response surface. Of course, in practice one usually does not know

just what that function is. Therefore, the investigator attempts to derive a

reasonable estimate of the unknown function, basing his estimate upon the exam-

ination of representative data. In other words, the investigator attempts to approxi-

mate the response surface, the true functional relationship between response and

factor levels, by using a derived polynomial equation. For example, in lieu of

the function f, he might substitute a complete second-order polynomial in X1 , X2,

and X3 of the formS2X2

Y=b +b X +b2X + b X i+b X +b X

0 1 1 2 2 3 3 4 1 5 2
-rb X 2+ b XA 4 b X X--bX X

6,3 7 1 2 8 1 3 9 23'

I
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where the numerical values of b0 through b9 are determined empirically according

to multiple regression techniques. The com,;ete second-order ploynornal includes

the linear effect of each variable, the hr%.-.r by linear interactions, and the

quadratic effect of each variable.

Factorial Design: A Data Collection Procedure

When developing an equation to approximate the response surface, the

investigator measures the desired response at relatively few data points, each

designated by some unique combination of independent variable or Factor levels.

For example, the investigator studying target detection might adopt a factorial

design in which each of the three display-related variables assumes two levels,

-1 and -1. Of course, these two factor levels can represent any desired real-

world factor levels simply by applying the appropriate linear transformation.

Determination of real-world factor levels using such a transformation is illustiated

in a later section. The 2 3, or 8, possible combinations of factor levels designate

the particular set of points at which the investigator measures the response. In

simple terms, the factorial design serves as a set of directions for collecting data.

If the factors are continuous and quantitative, the data collected in this

manner can serve as the raw input data for either a traditional analysis of vc iance

or a multiple regression analysis. When the investigator's aim is to derive a

polynomial approximation to a response surface, rather than merely to determine

the significance of the various factors, multiple regression is the mcre appropriate

analysis. The factorial design provides the quantitative levels of the relevant

factors or predictor variables, and the investigator makes direct measurements of

the response level at each data point designated by the design. In the case of the

preceding example, because each of the three factors, display resolut;on, visual

angle, and random noise, assumes two distinct, quantitative levels, a first-order

polynomial equation in each factor can be fitted to the data.

I
I



Clark and Willeges

If the investigator suspects that target detection is at least a complete

second-order funct v. of the three display-related factors, he must measure detec-

tion performance a - re than two levels of each of those variables. He could,

for example, provio,a for a complete second-order equation in all three factors by

collecting the approFriate data according to another factorial design in which each

factor assumes three levels. Such a design designates a total of 33 or 27 poinls at

which target detection performance is measured, an increase of 19 data points ove-

the previous design.

Central-Composite Design: An Alternative Data Collection Procedure

An alternative procedure could be followed to direct data collection efforts.

Suppose the investigator maintained the initial two-level factorial design involving

only eight unique factor combinations. He could augment that basic design by

including the following (2"3 + 1) or 7 additional distinct factor combinations,

expr-ssed here as ordered triplets of factor levels:

(0, 0, 0);

(-a', 0, 0); (a, 0, 0);

(0, -a, 0); (0, 0, 0);

(0, 0, -0a); and (0, 0, a).

Again, these factor levels can represent any desired real-world factor levels
simply by applying the appropriate linear transformation. The numerical value

which a assumes is chosen so as to insure certain advantageous design properties to

be discussed later. The particular a value is not crucial to the current discussion;

suffice it to say at this point that a is merely one of the levels which the factors

can assume.

The addition of these seven new data points to the basic factorial design

results in a design composed of 15 distinct factor combinations. Yet the investiga-

tor can now fit not only a second-order polynomial to the resulting data, but also
a poly--)mial involving some higher-order predictors as wel I. Thisl is usually more
than adequate for approximating most response surfaces. With an increase in only

I
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seven in the number of distinct data collection points the investigator is able to

measure the response at five levels of each Factor, those five levels being the values

+Ot, ± 1, and 0. (The corresponding complete factorial design involving five levels

of each factor entails 125 distinct data points for a single replicatiorn.) Moreover, if

repeated observations were made at the center point (0, 0, 0), the resulting design

would provide for an estimate of experimental error variance. This error estimate

allows the investigator to test the significance of the derived polynon'ral and each

of its components, as well as testing the significance of effects not included in the

derived equation.

This proposed alternative design is merely a combination or composite of a

traditional 23 factorial design and some strategically selected additional points

(Box and Wilson, 1951). In particular, the design is a three-factor central-composite

design in that the designated factor combinations or data points are spaced sym-

metrically about a central or center point designated by the ordered triplet of

factor levels (0, 0, 0) as shown in Figure I. More generally, a K-factor central-

composite design is realized by combining a basic 2K factorial with the (2.K 4- 1)

additional distinct factor combinations

(0, 0, ... , 0); (-a, 0, ... , 0); (Ot, 0, ... , 0);

(0, 0,) , ... , 0);

(0, 0, ... , -);(0,0, ... ,a)

(Cochran and Cox, 1957, p. 343).

Note that each of the 2K noncenter points is defined such that all factors except

one ore held at the 0 level, whereas the remaining factor assumes the values -a

and +a, in turn. The aggregate of these 2K additional noncenter points is

referred to as the star or axial portion of the resulting central-composite design.

As the number of factors increases to five or more, a 2 (K-p) fractional factorial,2K

where p is a positive integer, is often substituted for the complete 2 factorial,

thereby reducing still further the number of distinct data points (see Cochran

and Cox, 1957, Ch. 6A). In i;uch instances, a K-factor centrl-composite design

is realized by combining a 2(K-p) fractional factorial with the same (2 K + 1)|
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combinations givcn above. More specifically, when fractional facTo.;,!s are

incorporated into a second-order central-composite design, one chooses the defining

contrast such that all the first- and second-order components are present and are not

aliases of each other. Were this restriction not observed, the first- and second-order

effects would be inextricably mixed with one another. Regardless of the number of

factors, however, each.factor assumes five distinct levels corresponding to the coded

values ±0t, ± 1, and 0. Moreover, the designated factor combinations fall symmetrically

about the center pc;nt (0, 0, ., 0).

Insert Figure 1 about here.

Again, if the factors and the response are continuous, quantitative entities,

the data can be analyzed using multiple regression techniques. To test for the

significance of the derived polynomial and its components and the significance

of all other terms not included in the equation, the investigator needs an estimate

of experimental error variance. The central-composite design provides for an

estimate of error by repeating observations at the center point (0, 0, ... , 0).

Choosing the appropriate number of replications results in 6 design in which the

standard error of estimate is roughly the same at all points within the exporimental

region. Hence, the estimate of error at the center is used as an estimate of error

throughout the entire K-space, thereby minimizing redundancy. Too many replications

at the center yield standard errors of estimate which increase rapidly for those

points farther from the center. On the other hand, with too few replications of

the center point, the standard error is apt to be greater at the center than at the

surrounding data points. In the case of a three-factor central-composite design,

for example, the suggested number of replications at the center pclnt is six, thereby

increasing the total number of observations to 20. See Table 1. Altho•.L. te derivation

procedures are beyond the scope of this discussion, procedures exist for determining the

optimum number of center points of a K-factor design (Box and Hunter, 1957).

SAM
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Insert Table 1 about here.

Design Limitations

Of course, reducing the size of an experiment by eliminating data points

has its price. Coincident with the reduction in data is a reduction in obtained

information. In particular, when fractional factorials are incorporated into

the central-composite design, at least one factorial effect, the defining contrast,

is lost entirely. Prudent choice of the defining contrast(s), however, usually results

in losing information concerning some higher-order interaction(s) which seldom

affect performance anyway. In addition, interpretation of that information which

is provided by a fractional factorial central-composite design is somewhat more

ambiguous in that certain effects are mixed with one another, as indicated above.

By choosing the highest-order interaction as the defining contrast, the experimenter

can insure that first- and second-order effects are not confounded with one another.

Rotatabi lity

One desirable property of some central-composite designs is rotatability

(Box and Hunter, 1957). Rotatability exists when there is equal reliability of

predicted responses at all data points equidistant from the center. This is on

especially convenient design quality in exploratory work when the investigator is

ignorant of the response surface and its relative orientation to the orthogonal factor

axes. Rotatability imposes the additional constraint on factor level selection that

the value of a be equal to 2 K/4 (Box and Hunter, 1957). When a 2 (K-p) fractional

factorial design is used in place of the full 2 factorial, then a must equal 2

if rotatability is to exist (Box and Hunter, 1957). Thus, if the hypothetical three-

factor design diagrammed in Figure 1 is to be rotatable, the a value must be 1.682,

because 2K/ = 23/4 81/4 = 1 .682. To insure roughly equal precision of pre-

diction across the entire experimental region, the center point is replicated six

times. When complete, the design involves a total of 20 observations (as inaicated

I
!



Clark and Williges 9

in Table 1) with 14 of the experimental factor combinations lying on the surface of

a sphere of radius 1.682, and with 6 observations being made at the center point

(0, 0, 0).

Selection of Factor Levels

"The first, and perhaps most crucial, step in selecting factor levels for a

central-composite design (or even a basic factorial) is to determine the experimental

range of each factor to be incorporated into the design. Because polynomials cannot

be extrapolated with confidence, the derived polynomial equation should be considered

an approximation to the response surface only within the region defined by the respective

factor ranges. When appropriately transformed, the limiting real-world values of each

factor, as determined by the selected range, yield the coded values -iand +Q,

and the center of that range yields the coded value 0. For example, suppose that

the values of interest for display resolution range from 168 to 504 TV lines/dim.

Further suppose that ±01 assume the values -1 .68 and +1 .68 respectively, so as to

insure that the resulting design is rotatable. The investigator's next task is to

determine the linear transformation which: (a) when applied to the center of the factor

range, 336, yields the coded value 9, and (b) when applied to the lower and upper

limiting values of display resolution, 168 and 504, yields the coded values -1 .6F. and

+1 .68, respectively. It can be demonstrated that the following linear transformation

satisfies both these requirements:

* X1 - 336
X - 11 100

where X is a coded factor level and X is the corresponding real world factor level.
The remaining two levels of display resolution are determined by solving for X where
X assumes the values -1 and +1 in turn. Therefore, the appropriate five real-world

levels of display resolution are 168, 236, 336, 436, and 504 TV lines/din.

The appropriate real-world levels of all other experimental facto-s are

determined in like manner. In each case, (a) the range of the factor and the

center point are established, (b) the appropriate linear transformation is determined,
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and (c) the remaining two levels of the factor are determined in accordance with the

transformation. Although coding the appropriate real-world factor levels once they

ore determined is not necessary, the use of linear transformations of the data

simplifies analysis without affecting the restilt of any subsequent statistical tests.

On occasion this rigid demand regarding the selection of data points makes the

central-composite design impractical for some human factors studies. For example,

variables such as target type, target complexity, and briefing instructions are not

readily quantifiable. Moreover, it is sometimes neither practical nor feasible to

measure even certain quantifiable variables at the five levels specified by the

central-composite design. Alternative RSM designs have been developed which

require fewer than five levels (Box and Behken, 1960, and Draper and Stonemon,

1968).

Blocking

An additional feature of central-composite designs that affords the investigator

greater efficiency and flexibility is blocking. Under blocking conditions, subsets

of the complete set of data collection points are studied together. If the blocking

is orthogonal, any differences in mean performance among blocks are independent of

any main effects due to the independent variable manipulations, and as such, they

do not affect the underlying quantitative relationship between factors and performance.

If blocking were not orthogonal, the derived predictioti equation would be a function

of block effects as well as main effects. This aspect of design is valuable to the

human factors engineer who is concerned with isolating potential effects due to

such factcrs as different experimenters, changes in apparatus, and variable environmental

conditions. Recall the investigator studying radar target detection as affected by

display resolution, visual angle, and random noise. It is unlikely that all the necessary

data can be collected during a single flight or perhaps not even in the same aircraft.

By taklng advantage of orthogonal blocking techniques, he can guard against the

parameters of the derived prediction equation being affected by such differences. For

example, a block could refer to that set of observations which were madce during

any given flight.

' I 'l I t " I ... 1 I I ....' "f : I :' , , ' ' ' ' ' '
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Blocking of a central-composite design is accomplished readily by subdivid~ng

Sthe design into two parts: (a) the 2K factorial (oi 2(K-P) fractional factorial)

aportion and (b) the set of 2K points comprising the star or axial portion of the design.

As the number of factors increases, the 2 factorial (or 2 (KP) fractional factorial)

can be subdivided further into additional blocks by using fractional factorials. When

fractional factorials are used for blocking second-order designs, care must be

taken not to confound any first- or second-order effects with blocks, and none of

these effects should be aliases of one another within a given block.

Orthogonal blocking placed additional constraints on the central-composite

design concerning the selection of a and the number of center points. These

parameters must be chosen to insure that the average predicted response level is

the same for every block. Orthogonal blocking is guaranteed when the following

condition is met (Box and Hunter, 1957, p. 230):

2a 2 (N s N Ns0)2 (N)

2 (N + N 0)

or, in the event that a 2 K-p) fractional f•'torial is incorporated into the design,
20 (N + Ns0o

•2a2  s (N (2)

2 (Nc+ Nco)
K

where N and N.0 are the number of center points added to the intact 2 factorial

portion and the 2K star portion of the design, respectively. N and N reflect the
c s

number of noncenter points in the 2 factorial and in the 2K star, fespectively.

Given the proposed design in Figure 1 for studying radar target detection,

orthogonal blocking can be achieved by dividing the 20 data points given in Table 1

into subsets of 6, 6, and 8 observations, as depicted in Figure 2. The first two

blocks each represent one-half replicates of the complete 23 factorial portion, and the

ii Jthird block is the six-point star portion. Two center points have been included

in each of the three blocks for replication. Solving Equation 1 for ot yields an 01

I I value of 1.633.

Li
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Insert Figure 2 about here.

Given this revised value of oa, the investigator must revise his choices of

real-world factor levels for display resolution. By transforming X I where X assumes
the revised 0a values -1 .633 and +1 .633, in turn, yields revised levels for the lower

and upper limiting values of display resolution; the revised real-world levels are

173 and 499 TV lines/dm, respectively. Similarly, it can be shown that the change
in 0c value does not necessitate a change in the three intermediate real-w•,.rld values

of display resolution. Hence, the five levels appropriate to the crthogonally blocked

design are 173, 236, 336, 436, and 499 T V lines/dm.
The investigator must also rer.ompute the appropriate real-world levels of visual

angle and random noise in like manner. Note that the va!ue of O required to insure

orthogonality is slightly different from the 1.682 value required for rotatability. To
achieve orthogonal blocking it is often necessary to sacrifice rotatability, although

the appropriat! a values are usually quite similar. In human factors applications,

however, the potential gains from orthogonal blocking probably outweigh the risk of
forfeiting rotatability.

Added flexibility can accrue from use of blocking techniques, as Box and

Hunter (1957) illustrated when they employed blocking to facilitate exploration
of a response surface. A properly blocked design permits research to be conducted

in stages. Each block of data points from the complete second-order design

constitutes a first-order, rotatable central-composite design. Gathering data from
the first series of blocks, the investigator can judge, for example, whether or not

any of the original experimental variables merits being dropped from further

consideration or whether or not greater than a linear polynomial is needed to explain
the data adequately. If so, the design can be altered here rather than after all

data are collected. The ability to make such decisions at an early stage may mean

that the investigator is able to conclude his study after collection .2f considerably

less data than he had anticipated.

1
II



Clark and Williges 13

Analyses

Basically, two standard statistical analyses are conducted on the data accrued

from an RSM design. Frist, a least squares multiple regression analysis is performed

on the data to determine the functional relationship between performance (Y) and the

system variables (X). Multiple regression is merely an extension of simple linear

regression such that the multiple regression analysis includes more than one predictor

and/or terms other ihan linear components. Beccuse of the numerical complexity

involved in multiple regression, matrix algebra ordinarily is used for the calculation

of the regression equation coefficients. In addition, a matrix algebra solution using

correlation matrices rather than raw scores provides a flexible and efficient means

for handling a variety of possible regression equations within the same computer

program. A correlation matrix solution results in a standard regression equation

(variables are stated in terms of z scores and the intercept is 0) that can be converted

easily into a nonstandard or raw score regression equation.

The second analysis usually performed on data obtained from a RSM design

is an analysis of variance performed on the regression analysis. Essentially, the

analysis of variance partitions the sums of squares into variation due to regression

and variation not due to regression (residual). The regression sum of squares is sub-

divided into the variation of the particular partial regression weights resulting from

the preceding multiple regression analysis. The residual sum of squares can be

further subdivided into block effects, subject effects, lack of fit, and error. The

main purposes of this analysis of variance are to test the significance of the given

partial regression weights and to test for a significant lack of fit which might

indicate additional parameters are necessary in the regression equation. All of

the sums of squares are converted to mean squares by dividing by the appropriate

degrees of freedom. The resulting F ratios are constructed by using the error mean

square as the denominator.

Consider again the study of radar target detection, Y, as a function of

Sdisplay resolution, visual angle, and random noise, X X2 and Xil respectkve!y.

Hypothetical data for such a study are presented in Table 2. A multiple regression1
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analysis of these hypothetical data yields the following generalized, first-ordel

prediction equation:

Y = 16.115 - 1.203 X -0.503 X2 + 0.847 X3'

Substituting given levels of the independent variables into this equation affords

the investigator a corresponding predicted level of detection latency.

Insert Table 2 about here.

The results of a subsequent ANOVA performed on the regression analysis

appear in Table 3. The derived equation accounts for nearly 74% of the total

variance in detection latency. Each of the coefficients, excluding the constar.t

term b0 , is significant at well beyond the .01 level. Blocks are significant.

However, because blocking is orthogonal, the values of the regression weights

have not been affected. Noting that the lack-of-fit term is signifcant, the

investigator will submit his data to a second multiple rcgression analysis to deter-

mine a higher-order prediction equation.

Insert Table 3 about here.

For a detailed discussion of the analysis procedures, see Clark and

Williges, 1972.

DESIGN CONSIDERATIONS

In a recent article, Williges and Simon (1971) discussed several general

advantages of the RSM technique which contribute to its potential value in human

factors research. Among the most obvious benefits is the economy of data collection.

Not only is sampling restricted to the experimental region of greatest interest, but

J1
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also repeated observations are restricted to the center point of that region. As

originally conceived, RSM was developed as a methodology for quickly locating

optimums by means of a series of experiments each dependent on the results of the

preceding one. More specifically, Box and Wilson (1951) were interested in

determining the optimum combination of factor levels needed to produce the maximum

yield from a chemical reaction. However, human factors engineers are largely

interested in deriving global prediction equations which allow them to predict

performance levels accurately throughout an entire range of factor levels.

When the goal is to approximate an entire response surface, rather than

merely that portion of the surface surrounding the optimum, limiting multiple

observations to a single experimental point may not be the most judicious strategy.

Indeed, the actual variability in response may be so great across subjects and data

points, that to presume the standard error of estimate at the center point as an

adequate estimate of error at all points is unreaistic. A recent study concerning

transfer of training (Wil iges and Baron, 1972) affords a striking demonst ration of

the effect of estimating experimental error at a single replicated point as opposed

to estimating it across a series of replicated points. When replications were

restricted tc the center point, none of the experimental factors was found to

contribute significantly to the response level, despite their apparent importance

in the resulting prediction equation. When multiple observations were made at

each of the data points, however, the subsequent analysis revealed that some of the

experimental variables were significant in determining the response level. Of

course, when the basic RSM central-composite design is modified in such a manner,

methodological questions arise concerning how best to retain the positive attributes of

: the basic design, while still making the modifications appropriate to research with

human subjects. For example, should repeated observations be made at more than

one experimental point; should all data be retained or should they be collapsed;

should different subjects be observed at each experimental point or should the1J some subjects be observed at all points; under what conditions are particular design

variations especially appropriate?
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The following discussion proposes several design variations appropriate

I to human factors research together with the ensuing methodological considerations.

A generalized computer program to analyze date from each of these design variations

I as well as data from the basic RSM central-composite design has been developed by

Clark, Williges, and Carmer (1971), and a detailed discussion of the statistical

I procedures is presented by Clark and Williges (1972).

i Collapsed Designs

The simplest modification is achieved merely by replicating the entire

I central-composite design a given number of times. Consider, for example, (he

orthogonally blocked, RSM central-composite design depicted in Figure 2. Suppose

I the investigator elects to replicete that design five times. The data points remain

the same as those listed under Figure 2. Now, however, the design involves a

I total of 100 observations, over a total of 15 distinct factor combinations. Block 1

now contains 30 observations, Block 2 contains 30 ob.ervations, and Block 3 contains

1 40 observations. Note that, although multiple observations have been made at

each of the experimental points, the center point has still been replicated six

times more than any other point. AJthough the points on the surface of the sphere

have been replicated 5 times, the center point has been replicated 30 times,

10 times within each of the three blocks.

At this point the investigator must decide whether or not to retain and

analyze directly the data corresponding to all 100 observations. He could collapse

his data across those subjects within the same block who were observed at the some

experimental point and then analyze the collapsed data without having to make any

modifications in calculation procedures. The net effect of collapsing in this

manner is a data matrix identical in form and number of observations to one resulting

from the original blocked RSM central-composite design shown in Figure 2. Now,

however, the data are combined values obtained from collapsing rather than values

representing a simple observation. In addition, estimates of experimental error

are obtaired from. the resulting six center points, each of which is a coliapsed score.
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This procedure has the advantage of retaining all the features of a RSM

central-composite design as well a, .,ddng stability to the experimental data points

because the collapsed data are not heavily biased by the results of any one extreme

sobject. ThIs is especially valid if the median is used as the combining statistic.

Because it is probably of little value to develop unique prediction equations for

each subject, such a collapsing procedure may be appropriate even though degrees

of freedom are lost from the design.

A recent cross-validation study (Williges and North, 1972), however,

illustrates a potential drawback of collapsing data prior to analysis. When median

data were used to derive prediction equations, the resulting multiple regression

coefficient R was notably higher than the corresponding value resulting from the

comparable noncollapsed data analysis. However, the shrinkage of R from the

original sample to the cross-validation sample was very pronounced when regression

was based on collapsed data. There was far greater shrinkage than that predicted

by the modified Wherry shi;nkage formula (Lord and Novick, 1968; Herzberg,

1969). On the other hand, shrinkage was minimal when derivation was based upon

noncollapsed data. Hence, for predicting response levels for individuals not

included in the derivation sample, the collapsed analysis did not afford appreciably

better prediction despite the deceivingly greater accuracy of the derived prediction

equation as suggested by the initially high multiple R value. Indeed, the multiple

R deriving from noncollapsed data was far more representative of the predictive

accuracy of the equation.

Noncollapsed Designs

Suppose that the investigator replicating the blocked central-composite design

chooses not to collapse his data across subjects. Rather, he retains each of the subject's

data for subsequent analysis. By retaining all this information he gains degrees of

freedom for the error term which were previously lost by collapsing the data. Error is now

estimated across all points at which replications occur, instead of using only the estimate

of the error at the center point as in the collapsed design and the original desipn. It is

quite possible that there may be certain areas of the experimental region in which thereI

11
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is considerable variability in response and other areas in which the variability

is negligible. This is particularly true if the range of factor levels under consideration

is sizable. Given this variability, it is not reasonable to use the estimate of error

at only one area as an estimate of error throughout the experimental region.

The prediction equation which one develops should afford a reasonable description

of the entire response surface, not merely a selected area of that response su'face.

When noncollapsed designs are used, the investigator must make another

major decision with respect to his selected design. If, due to the nature of his

research problem, he chooses to observe different subjects at each of the experimental

points, the resulting study constitutes a between-subjects design. If, on the other

hand, he elects to observe each of a set of subjects under all experimental conditions,

the resu~ting study constitutes a within-subject design. The choice of a between-

versus a within-subject design is dictated by the particular question which the

researcher is investigating. In either case, if the necessary restrictions are observed,

the design conforms to the basic central-composite design.

Between-subjects designs . Given certain research questions, observing the

same subjects under more than one experimental condition would lead one to draw

invalid conclusions concerning the effect of the various experimental manipulations.

Consider, for example, an investigation of the comparative efficacy of selected

training methods. Certainly Training Method B cannot be evaluated accurately by

observing the peformance of subjects who have previously been trained to criterion

under Method A, because the observed performance may be a function of not only

the condition itself, but also of the preceding condition which he has experienced.

In such a case it is imperative that the investigator adopt a between-subjects design,

observing ecich subject under only one experimental condition. The transfer of

training study cited earlier ^Williges and Baron, 1972) provides such an example.

Recall the detection latency study which replicates the orthogonally blocked

central -composite design of Figure 2 five times. If 100 different subjects ore observed

across those 20 data points (6 of which are the center point), a between-subjects

design is realized. Because the full central-composite design is being replicated in-I
Ii
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tact, the necessary relationship guaranteeing orthogonal blocking, as given in

Equation 1, is still satisfied. As in the original design the center point is being

replicated six times more than any other point. Although experimental error is now

being estimated across all data points and includes subject to subject variation,

the results of a subsequent analysis to determine a first-order prediction equation

are of the same type shown in Table 3. The increased number of observations is

reflected in the values for total degrees of freedom, residual degrees of freedom,

and error degrees of freedom; the adjusted values are 99, 96, and 83, respectively.

Meyer (1963) has used this design procedure successfully in a human learning

experiment.

If, indeed, the variability in response at each of a series of data points is

used as an estimate of experimental error variance, there is no need to replicate

one point more than any other. In the original central-composite design, in

which only the center point is replicated, the additional observations at that point

provide the investigator with his only estimate of error. But, with repeated ob-

servatons occurring at each of the experimental points, there appears no need to

make more observations at the center merely for the sake of obtaining an estimate

of error. The investigator could choose instead to replicate each of the experimental

points, including the center, an equal nunber of times, while still maintaining

the use of different subjects for each observation.

Eliminating observations at the center point, however, has implications for

orthogonal blocking. It is now necessary to adjust the value of a accordingly,

because the original blocking has been disturbed due to the elimination of center

points from the factorial portion of the design and the reduction in the number of

A center points in the star portion of the design. With respect to the target detection

latency example in which repeated observations are mode at each of 15 unique

experimental points, making the appropriate adjustment results in an a value of

1 .87 rather than 1 .633, as defined by Equation 1. This change in the rvvalue is

N reflected in Figure 3 which designates the orthogonal blocking of the 15 unique

experimental points. Note the reduction of data collection points within each of

the three blocks, and the complete absence of centei paints in Biocks 1 and 2.Scomletecenel pint
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Changing the coded value of cc also necessitates reselecting the real-world levels

of the various factors under study. Recalculating the levels of dA1piny iesolution,

for example, the investigator learns that the five levels appropriate to the new

orthogonally blocked design are 149, 236, 336, 436, and 5'.3. Selecting these

five levels retains the center of the experimental i.,gion, but increases its

range beyond that indicated in Figure 2.

Insert Figure 3 about here.

Replicating this modified RSM central-composite design five times, the in-

vestigator makes a total of 75 observations, 20 in Block 1, 20 in Block 2, and

35 in Block 3. Submitting these 75 observations to direct analysis to determine

a first-order prediction equation yields results similar to those shown in Table 3.

Again, the change in design is reflected in corresponding changes in values of

total degrees of freedom, residual degrees of freedom, and error degrees of

freedom; the adjusted values are 74, 71, and 60, respectively.

Within-subject design. On occasion the objectives of an experiment make

it appropriate and desirable to observe each subject in each treatment condition. In

such a case, each individual serves as his own control, and between-subjects

variauility cldes not affect the experimental conditions. Moreover, observing the

same set of subjects under each treatment condition affords another obvious advantage

over the between-subjects designs in that fewer subjects are needed in conduct the

study, albeit one may encounter the familiar problem of subject attrition. Of

course, this design strategy is not appropriate when a subject's performance in one

condition is affected by prior experience with any of the other conditions. As

previously mentioned, a within-subject design is inappropriate for studying

differential training effectiveness. Howeveo, it could be used effectively to

investigate the differential suitability of various display formats to enhance target

detection where there is little or no differential transfer from display to display.

When these within-subject designs are used, caution must be exercised to imp!ement

the proper counterbalancing so as to avoid spurious sequence effects.

!I
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The within-subject design combines several features of the RSM central-

composite design variations previously discussed. Again, a check should be made to in-

sure that the selected value guarantees orthogonality in the case of blocked designs,

or rotatability in the case of unblocked designs. The appropriate real-world levels

of the experimental factors are then determined accordingly. Data are retained,

uncollapsed from repeated observations made at each of the experimental points,

thereby affording increased degrees of freedom for the resulting error term. As

in the other design variations, the within-subject design permits tests for the

significance of blocking and of lack of fit as well as tests of individual partial

regression coefficients. In addition, a subject term can be isolated and tested for

significance. Because subjects are completely crossed with treatments (every

subject receives every treatment once), one can refine the estimate of experimental

error variance by accounting for the variability within the individual subjects after

assessing the variability within treatment conditions. In a within-subject design

Sthe error term which rc•u!ts f~omi merely accounting for the variability of response

at the experimental points is comprised of intersubject variations, the interactions

between subjects and treatment conditions, and random error. By removing the

subject effect a better estimate of experimental error is available for subsequent

I tests for significance. Moreover, if one assumes no interactions between subjects and

treatment conditions, one can test the isolated subject term to determine the existence

of sigrificant intersubject variation. (For greater detail concerning the appropriate

analysis see Clark and Williges, 1972.)

1 By way of example, the same four subjects might be observed at each of the

15 experimental points designated in Figure 3, thereby yielding a total of 60

I observations. Hypothetical data for such a design are presented in Table4 . Note

that the 1 .87 value for Ot is still appropriate because all 15 points, including the

I cent3r point, are being replicated an equal number of times as in the between-subjects

design with equal replication at all data points. A multiple regression analysis of

these hypothetical data yields the following first-order prediction equatinn:

Detection Latency 16.44 -1.16751591 - 0.39631381 X+ 0.2118942

I
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Substituting given levels of display resolution, visual angle, and random noise for

X1 , X2 ' and X3 , respectively, into this equation provides a corresponding predicted

level of detection latency.

Insert Table 4 about here

The results of a subsequent ANOVA performed on the hypothetical data

of the regression analysis appear in Table 5. Note the additional "subjects"

component into which residual variance has been subdivided. The corresponding

degrees of freedom reflect the use of four subjects throughout the experiment.

Notice also that the error degrees of freedom are reduced by 3, the degrees of

freedom attributed to the subject factor. Had this experiment utilized different

subjects throughout, the value of error degrees of freedom would have been 45

rather than 42. But, in the case of within-subject designs, the error term is

refined by removing the subject effect from it.

Insert Table 5 about here

Mills and Williges (1972) have used a within-subject design in a

recent study of a radar target initiation and maintenance. Their results reveal

highly significant intersubject variability which was eemoved from the regression

equation. In addition, the resulting prediction equations appear to demonstrate

a high degree of predictive validity to other points within the originally sampled

surface (Williges and Mills, 1972).

j CONCLUSIONS

The techniques of RSM, and ihe central-composite design in particular,

can be effectively used in human factors research, where the goal is frequently

the development of an equation to describe the relationship between human per-

formance and a host of equipment parameters. Certa;n modifications in the basic

q
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RSM central-composite design, however, apear to make the method more appropriate

to research involving human subjects. In making the appropriate design modifi-

cations, the investigator must make several major decisions. He must decide whether

or not to make repeated observations over a series of experimental points rather than

at a single point. If his goal is to develop a global prediction equation to approxi-

mate the entire response surface, replication at each of the experimental data-

collection points appears to be a wise strategy. The basic central-composite design,

calling for replication at only the center point, is perhaps better reserved for

preliminary research where the primary aim is to ascertain quickly what major

factors appear worthy of more thorough study.

The investigator must also select either a between-subjects or a within-

subject design. This choice is dictated by the objectives of his particular experiment.

Of the design variants discu-sed above, those advocating multiple and equal

replications at all experimental poinits, followed by analysis of uncollapsed data,

appear the most advantageous, whether they are conceived as between- or within-

subject designs. The particular modifications which the investigator elects to

implement have ramifications for other aspects of the des;gn such as orthogonal

blocking and rotatability. Appropriate adjustments must be made in factor level

selection in order to retain suck attributes in view of the overall design modification.

L
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TABLE 1

Coded Value Coordinates of Data Points for a Second-Order CentraI-Composite

Design in Three Variables

Observation x I X2 X3

1 1.0 -1.0 1.0

2 1.0 1.0 -1.0

3 -1.0 1.0 1.0

4 -1.0 -1.0 -1.0

5 -1.0 1.0 -1.0

6 -1.0 -1.0 1.0

7 1.0 -1.0 -1.0

8 1.0 1.0 1.0

9 -a 0.0 0.0

10 0.0 -i 0.0

11 0.0 0.0 -of

12 a 0.0 0.0

13 0.0 o 0.0

14 0.0 0.0 o

15 0.0 0.0 0.0

16 0.0 0.0 0.0

17 0.0 0.0 0.0

18 0.0 0.0 0..0

19 0.0 0.0 0.0

20 0.0 0.0 0.0
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TABLE 2

I Hypothetical Datn in Coded Form for a Three-Factor, Second-Order, RSM Central-

Composite Design

x xI x 2  x3 Y

Detection Latency
Observation Block Resolution Visual Angle Random Noise (SecondWs

1 1 1.00 -1.00 1.00 16.2

2 1 1.00 1.00 -1.00 14.3

1 3 1 -1.00 1.00 1.00 17.0

4 1 -1.00 -1.00 -1.00 i7.4

5 1 0.00 0.00 0.00 15.5

6 1 0.00 0.00 0.00 15.8

7 2 -1.00 1.00 -1.00 16.8

8 2 -1.00 -1.00 1.00 18.1

9 2 1.00 -1.00 -1.00 14.9

10 2 1.00 1.00 1.00 16.2

11 2 0.00 0.00 0.00 15.0

12 2 0.00 0.00 0.00 14.8

13 3 -1.63 0.00 0.00 19.0

14 3 0.00 -1.63 0.00 17.3

15 3 0.00 0.00 -1.63 14.8

1 16 3 1.63 0.00 0.00 13.9

17 3 0.00 1.63 0.00 14.6

S18 3 0.00 0.00 1.63 19.2

19 3 0.00 0.00 0.00 15.8

20 3 0.00 0.00 0.00 15.7

k
I
q
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I TABLE

First-Order Regression Analysis of Variance Summary Table for Hypothetical

I Detection Latency Data

I Source df MS F

I Regression (3) 10.73 536.50**

b1 1 19.26 963.00**

b 1 3.37 168.51**I b2
b3  1 9.54 477.00*

I Residucl (16) 0.71

Blocks 2 0.21 10.50*

SLack of Fit 11 0.99 49.50**

Error 3 0.02

Total (19)

f*] < . 05 I

fI<O 5

Multiple Regression Coefficient, R.. = 0.86

Coefficient of Determination, R2, = 0.74

I
I
I

Ii
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TABLE 4

Hypothetical Data in Coded Form for a Three-Factor, Second-Order, RSM Central-

3 Composite Design Using Repeated Measures on Four Subjects

Detection Latency (Seconds)
For Four Subjects

i Resolution Visual Angle Random Noise $1 2 3 4

1.00 -1.00 1.00 15.8 15.9 16.1 16.4

1.00 1.00 -1.00 14.3 14.5 14.0 14.8

-1.00 1.00 1.00 17.0 17.3 17.1 16.9

II-1.00 -1.00 -1.00 17.4 17.5 17.0 17.3
t I-1.00 1.00 -1.00 16.8 16.7 17.0 17.0

1 -1.00 -1.00 1.00 18.1 18.3 18.6 18.1

1.00 -1.00 -1.00 14.9 15.2 14.5 15.0
1.00 1.00 1.00 16.2 16.7 16.4 15.9

-1.87 0.00 0.00 19.0 19.1 18.9 19.5

0.00 -1.87 0.00 17.3 16.9 17.4 16.8

0.00 0.00 -1.87 15.1 15.3 14.4 15.0

1.87 0.00 0.00 13.9 14.2 13.7 14.1

0.00 1.87 0.00 14.9 15.0 14.8 15.0

"0.00 0.00 1.87 19.2 19.0 20.0 18.9

0.00 0.00 0.00 15.8 16.1 16.4 16.0

I

I1
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TABLE 5

First-Order Regression Analysis of Variance Summary Table for Hypothetical

i Detection Latency Data of Four Subjects

I Source df MS F

I Regression ( 3) 43.87 548.37**

b1 1 81.75 1021.87**

I b2  1 9.42 117.75**

b3  1 40.44 505.50**

I Residual (56) 0.42

Blocks 2 0.65 8.13*

I Subjects 3 0.05 0.63

Lack of Fit 9 2.04 25.50**

Error (42) 0.08

Total 59
I * <.01

** <<.00i

Multiple Regression Coefficient, R, 0.92
2

Coefficient of Determination, R 0.85

i i
II

I
I
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Figure 1. Three-factor, central-composite design.

Figure 2. Orthogonal blocking of second-order, central-composite design i, three

variables with coded value coordinates of data points.

Figure 3. Orthoqonal blocking of second-order, ,zentral.-composite design in three

variables with coded value coordinates of data points employing equal number of

replications.
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Transfer Assesnment Using a Between-Subjects Central-Composite Design

ROBERT C. WILLIGES and MARVIN L. BARON University of Illinois at Urbana-

Champaign

""ransfer of training from a pursuit rotor to an epicycloid pursuit rotor was

assessed by means of a Response Surface Methodology (RSM) central-composite design.

Number of training trials, time between training trials, and tracking speed of the

training task were combined in a three-factor, RSM central-composite design.

Multiple regression prediction equations relating these three independent variables

to trials to criterion on the epicycloid pursuit rotor were calculated for both an

unreplicoted and replicated RSM design. A representative first-order response

surface was plotted for the replicated design. The results were discussed in terms

.of necessary RSM central-composite design modifications and the overall applicability

of using RSM in transfer of training research.
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INTRODUCTION

With the development of Response Surface Methodology (RSM) by Box and

Wilson (1951), an experimental technique was introduced that specifies procedures

for the economical collection of data in multiparameter research. Although RSM

was originally developed as a series of experimental steps to ascertain the optimum

combination of variables for producing maximum yield of a chemical process, the

experimental design procedures are applicable to human performance research.

One aspect of RSM that appears to be particularly useful is the central-composite

design. This design is often used in the systematic exploration of complex response

surfaces. Because of the economy and efficiency of the central-composite design

(see Williges and Simon, 1971), it may be useful in determining an overall multiple

regression prediction equation which describes the combined relationship among

several independent variables in producing a certain level of performance.

Clark and Williges (1972a) suggested various modifications that make RSM

central-composite designs more applicable to human performance research. The

major purposes of this study are to investigate one of the proposed design modifications

concerning data replication and to use a between-subjects RSM central-composite

design in predicting the simultaneous effects of several variables affecting transfer

of training by means of a single multiple regression equation.

Although RSM has been used in engineering for many years, only one limited

application has been made to problems of human learning. Meyer (1963) used

RSM to study the effects of four factors on the amom.-t of retroactive inhibition

induced in a typical retroactive inhibition paradigm in verbal learning. A

response surface was plotted relating amount of recall to variation in the independent

variables, and the point of maximum recall was determined.

One major goai of any training program is to maximize positive transfer.

Many task dimensions, such as distribution of practice, degree of original learning,

and task difficulty, have been investigated to determine their significance in

pF:oducing transfer. The separate effects of these varicbles orc wcll documented in

F.
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the research literature, but little research has been concerned with the combined

effects of these variables. In any training situation, however, all of these variables

are operating together, and their particular combination determines the actual

amount of positive transfer. To understand the underlying relationships of these

variables, it is important to investigate all of the significant variables simultaneously.

Distribution of practice is a dimension that has been extensively investigated

in the context of transfer of training. Digman (1959) demonstrated that performance

under massed practice may appear to be depressed when compared to distributed

practice, although it does not affect learning of a motor skill. Studies by Reynolds

and Adams (1953) and Denney, Frisbey, and Weaver (1955) have shown that if

subjects are trained under massed practice and then transferrec' to distributed prac-

tice, their performance improves to the level of control subjects tracking solely

with distributed practice. Massed practice, therefore, tends to depress the standard

of performance rather than the rate of learning.

The results of studies dealing with the degree of original learning on transfer

are straightforward: positive transfer increases as a function of the amount of

original learning. To summarize the effect of practice, Mandler (1962) states that

a small amount of practice produces an initial negative transfer, then transfer returns

to zero with more practice, and finally positive transfer occurs with additional

practice. Studies by Siipola and Israel (1933) and Mandler and Heinemann (1956)

provide support for this contention. Simply stated, negative transfer has the greatest

likelihood of occurring after relatively little practice on the original task.

Unfortunately, the relationship between task difficulty and transfer is not

as simple. In some cases, transfer is greater from a difficuit to an easy task,

and sometimes the reverse is true. Generalizations about the effect of task

difficulty upon transfer are limited because so many different tasks have been

used to study the effect of this dimension, and it is not easy to determine what

constitutes comparable levels of difficulty with different tasks (Day, 1956).

An attempt to explain the findings of differential transfer resulting from

variations in task difficulty has been made by Holding (1965). His principle of

I
! L ,40



Williges and Boron 4

"inclusion" states that if the requirements of a subsequent transfer task are con-

tained in the training task, transfer performance will be high. When inclusion of

these requirements is not present, transfer will be low. When the inclusion principle

applies to a task, one would expect to find greater transfer from the difficult-to-

easy direction because the difficult training task contains the skill components

required for mastery of the easy transfer task.

Holding also offered an explanation for differential transfer favoring the

easy-to-difficult order of tasks by proposing his hypothesis of "performance

standards." He states that a subject develops high performance standards when

working with an easy task. Good performance on the transfer task will result when

these high standards ore carried over to the more difficult transfer task.

By using an experimental task similar to that used in previous research,

earlier experimental results of variables representing dimensions of amount of

original learning, task difficulty, and distribution of practice can be used as

a comparative baseline. The results of the subsequent RSM central-composite

prediction equation can be readily compared to this baseline to ascertain

compatibility of results.

METHOD

Apparatus

A pursuit rotor (Melton, 1947) was used as the training task, and an epicycloid

pursuit rotor (Barch and Lewis, 1951) was used as the transfer task. A small brass

target, 1/2 inch in diameter, moved clockwise on a rotating disc in the pursuit

rotor circumscribing a 12-inch circular path. Although the identical target size

was uwed in the epicycloid pursuit, the target path was heart-shaped rather than

circular. This path was generated by a small satellite disc that revolved about a

point 3 1/2 inches from the center of the large disc. During each clockwise rotation

of the larae disc. the satellite revolved once in the samc direction.

I
'411
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A spring-loaded metal stylus was used to track the target on both the pursuit

rotor and the epicycloid pursuit rotor. Time-on-target was recorded to the nearest

second by means of a clock-timer.

Experimental Design

I A three-factor, second-order RSM cenrral-ccmposite design was used.

According to the design, five levels of each factor were needed with the coded

I values, -1 .633, -1, 0, +1, +1.633. A 23 fcictorial design was constructed from

the +1 and -1 coded values, and a 2.3 star component was constructed from the

Ivalues, +1 .633 and -1 .633. The design was blocked across three different

experimenters to control against any experimenter bias. A coded 0( value of 1 .633

j was chosen to maintain orthogonal blocking. The various coded data points col-

lected by each experimenter during a single replication of the RSM design are listed

Jin Table 1. The complete replication of the RSM central-composite design included

20 data points, 6 of which were collected by Experimenter 1, 6 by Experimenter 2,

and 8 by Experimenter 3. Table 1 also shows that the center point (0, 0, 0) was

observed twice in each block in order to obtain an estimate of experimental

error. Note that the design was blocked such that Experimenters 1 and 2 each

collected data on a one-half replicate of the 23 factorial design, and Experimenter

3 collected data on the star component of the design. The third-order interaction

was chosen as the defining relation-hip for the one-half replicates so that no first-

or second-order components would be confounded with experimenters or each other

in the second-order RSM central-composite design. (See Box and Wilson, 1951;

4 Simon, 1970; and Clark and Williges, 1972b for additional details concerning the

central -composite design.)

Insert Table 1 about here

The three factors were amount of original learning, task difficulty, and

j distribution of practice during training. Amount of original learning was manipulated

in terms ot the number of training trials with actual values of 5, 11, 20, 29, and 35

I 1 0
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trials for the coded values of -1 .633, -1, 0, -0, and +1.633, respectively. Task

difficulty was represented by the tracking speed of the pursuit iotor during training

with actual values of 5, 26, 60, 94, and 115 r.p.m. Distribution of pactice was

varied by changing the timtle between training trials with actual values of 15, 27,

45, 63, and 75 seconds.

Subjects

A total of 40 subjects were selected from students enrolled in the primary

flight training course at the University of Illinois and from students currently holding

an FAA private pilot certificate. F~ight students and private pilots were used to

obtain a group of subjects with more homogeneous perceptual-motor abilities than

subjects from the general population. Twenty subjects were used in each of two

replications of the design. Each subject was paired with another subject receiving

the same experimental training condition. The subject in each pair requiring the

fewer trials to reach criterion during transfer was awarded one hour of airplane

rental time. The other subject in each pair received no reward for his participot"on.

Procedure

Each subject received the appropriate combination of the three inder.•,ndent

variables during training on the pursuit rotor. Trials were 60 seconds in length.

The next day, each subject transferred to the epicycloid pursuit rotor. Before

beginning the transfer task, each was shown a diagram of the heart-shaped path of

I the target. Each subject was required to continue tracking the epicyclold pursuit rotor

until he attained a criterion of at least 10 seconds on target during two successive

I 60-second trials. The transfer task consisted of the center level,- of both tracking

speed and time between trials used during training, namely, 45 r.p.m. and 60

seconds.

RESULTS

The results were analyzed in two different stones, First, the data were

analyzed as a traditional, RSM central-composite design with multiple observations

r. 4
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at only the center point of the design. Second, the complete design was replicated,

and the data were analyzed by considering multiple observations at each point

in the design. A computer program developed by Clark, Williges, and Carmer (1971)

was used to conduct the RSM regression analyses during both stages. A detailed

discussion of these specific calculation procedures is presented by Clark and Williges

S(1972a).

Unreplicated Design

Using the data obtained from the 20 treatment conditions, a complete first-

order standard multiple regression equation was obtained using the following correlation

matrix solution:

b' = rrXXI-I [r r 1 (1) 0

where b' is a column vector of the m standard partial regression coefficients bf, j = 1, m;

r rXX is the inverse of the m x m correlation matrix, the elements of which
I k

are all pairwise correlations between the m independent variables; and [ r x.1I is
I

the column vector, the elements of which are the pairwise correlations between Y

and each of the m independent variables. In the case of a complete three-factor

first-order equation, m is three.

The three resulting stcndar.1 partial regr,-ssion coefficients, b, i 1, 3, of

Equation I are readily converted to the corresponding nonstundard coefficients,

b., according to the following relation:

b. =b.'-" . (2)

The intercept value, b0 , is obtained as follows:

b0 = 7'-br ... ,-b.. . . (3)
1 1 ' I I

The resulting nonstandard, complete first-order multiple regression for these data

J would be in the form

Y = b+bx1 +bX BX3 (4)

II
,| t'l' I I'I 1I ••I • '1• ~ i•• I= 4.1. ..... • • • 'i"-
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Specifically, the resulting multiFle regression equation using the uncoded data w's:

Trials to Criterion = 47.18 - 0.38 N - 0.08T - 0.39S

where Trials to Criterion = two successive 60-second transfer trials on the epicycloid

"pursuit with at least 10 seconds on target on each trial; N = the number of training

trials on the pursuit rotor; T = time between training trials; and S = the tracking

speed of the pursuit rotor. The multiple correlation coefficient was .68.

The regression anolyqis can subsequently be submitted to an analysis of

variance to estimate the reliability of the various effects. Essentially, the total

variation is partitioned into regression sum of squares (SS) and residual SS.

Regression can be further subdivided into the additional SS due to each partial

regression coefficient. Likewise, residual SS in this analysis can be partitioned

into replication SS (error), lack of fit SS, and experimenter SS. The general

equations for calculating these effects cre as follows:

Total SS = Iy.2 + (-y.)2/N ; (5)I I

Regression SS = bt , (6)

where bt is the row vector transpose of the column vector of partial regression

coefficients, and g is the column vector of corrected cross products bet.Yeen the

dependent variable and the various independent variables;

Residual SS = Total SS - Regresion SS ; (7)

additional SS due to X. b / , (8)
I I I

.th
where b. is the I partial regression coefficient and c.. is the element occupying.thit il

the ith row and i column of the inverse of the corrected sum of sqlu'ares cross-

product matrix; NE 2

Experimenter SS = m --yE (9)
k=1 k k

where 7 is the grand mean of the dependent variables across all observations,

7'E is the mean of the dependent variables across the observations comprising the

Ekth th
ktexperimenter, m is the number of observations comprising the k experimenter,

mE1

k,
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and NE is the number of experimenters comprising the entire design;

Replication SS = E (Y. 2 (10)
i

where the index i corresponds to the repeated observations at the center point

(0, 0, 0) and 7 r is the mean of the dependent variable across the replications of the

center point. This value is calculated separately for replications under each

experimenter and then summed across experimenters;

and

Lack of Fit SS = Residual SS - Experimenter SS - Replications SS. (11)

The center portion of Table 2 summarizes the results of a subsequent analysis

of variance performed on the regression analysis. Using replications at the six

center points at the RSM design as an estimate of error, the analysis yielded

nonsignificant effects due to regression, partial regression weights, experimenters,

and lack of fit (p >.10).

Insert Table 2 about here

Because error was estimated only in the center of the design yielding

three degrees of freedom, the error variance was large and resulted in the other

effects not being statistically reliable. If the entire design were replicated, a

more sensitive estimate of eriar could be obtained because of the substantial

increase in the degrees of freedom of the error. This procedure would seem to, be

particularly necessary in a between-subjects design assessing human performance

on a perceptual-motor tcsk where large individual differences might be expected.

Consequently, the entire RSM central-composite design was replicated, thereby

adding an additional 20 observations to the experiment.

Replicated Design

The first-order, RSM multiple regression prediction equation foi uncoded,

replicated data was:

Trials to Cri;erion 47.74 - 0.36N - 0.06T - 0.40S1
! If;
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The right portion of Table 2 shows the analysis of variance for the replicated

multiple regression equation. The regression equation now accounts for a significant

amount of the variability even though the multiple correlation. coefficient remains

approximately the same as the unreplicated data (R = .69). In addition, the analysis

of variance demonstrates that number of training trials and tracking speed of the

training task were both significant contributors to prediction of trials to criterion

during transfer. Time between training trials, however, was not a significant

predictor (p > .10), and the lack of fit was not significant (p > .05). Note that

the degrees of freedom contributed by the additional 20 points in the replicated design

all appear in the replication term, thereby providing a more sensitive estimate of error.

Figure I depicts the linear response surface defined by the replicated design

regression equation. The two plotted curves on the graph indicate transfer

performance in terms of 15 arnd 25 transfer trials to reach criterion. The transfer

surface is primarily a function of the number of training trials and tracking speed

of the training task. Time between training trials affects the contour of the transfer

response surface only slightly. In addition to plotting the transfer surface, these

curves also illustrate the tradeoffs that must be made among the independent

variables in order to obtain a given number of trials to criterion on the transfer task.

Insert Figure 1 about here

DISCUSSION

After comparing the results of the replicated and the unreplicatnd design,

I it is clear that RSM designs need to be modified somewhat when applhed to human

performance. Although the resulting prediction equations were similar in both

the replicated and unreplicated designs, the replicated design was more sensitive.

When different subjects are used in a motor skills task, the results of this study

indicate that the between-subject variability is such that replication is de'irnhle

over the entire design.

F7
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It shoold be noted that it is not necessary to replicate the entire design.

The design can be replicated with only 2 center points rather than witt the 12

required for a complete replication of the intact three-factor, RSM central-composite

design. When blocking is used, c.n adjustment must be made in rhe coded value of

the noricenter points (a) of the third block in order to maintain orthogonal ity

between the block effects and the independent variables. Procedures for calculating

this adjusted value are provided by Cochran and Cox (1957) and Clark and Williges (1972b).

The effects of all three independent variables used in the replicated

multiple regression prediction equation appear to be compatible with previous

research. As the number of training trials or the degree of original learning

increases, trials to criterion in transfer decrease. Ellis (1965) states that positive

transfer increases with increasing practice on the training task.

Time between trials was an unreliable predictor in this study; but ihe trend

suggests that the longer the time between trials, the better the performance on the

transfer task. This result is consistent with findings resulting in better performance

with distributed rather than massed practice (Digman, 1959). It is not altogether

surprising that time between trials was not a significant contributor to transfer in

view of previous research in perceptual-motor skill that suggests this variable

primarily affects performance ratheý than learning (Reynolds and Adams, 1953).

Tracking speed was a strong determiner of transfer. Because trials to

criterion: decreased as the tracking speed of the training task increased, the effect

of this variable is in line with the point of view which contends that higher transfer

results from the shift from a difficult to an easy task. This result appears to support

the "inclusion" principle of Holding (1965), because the transfer task consisted of

a track involving a continuously changing rate of rotation. To the extent that the

training task included the higher rates of tracking during training, transfer

performance was improved.

Although these results support previous research, the real value of this
study is that it provides a simultaneous investigation of all three variables, thereby

providing information as to the relative importance of each. Obviously, the
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relationship among these variables cannot be extended beyond the Imits of the
Srange of levels tested. Tracking speed during training could be increased to a

point where the subjects could no longer track the target. 4imilarly, although

transfer is a positive function of the number of training trials, a point will be

reached beyond which additional trials will no longer produ,-e a significant increase

in transfer. Consequently, one would expect the transfer surface to become nonlinear

as the range of variables increases.

Even in the present results, there is some ind cation of ncnb;near or higher-

order effects. The lack of fit in the replicated design in Table 2 was not

significant at the .05 level. If the alpha error is increased to .10 to reduce the

probability of a beta error, the lack of fit becomes significant. A subsequent

multiple regression analysis fitting complete First-order (linear) and second-order

(quadratic) tenns with the coded data yielded no significant second-order effects.

The lack of fit of the complete second-order analysis was significant (p < .05)r

however, suggesting that still higher-order terms may be present.

The results of this study clearly indicate that RSM techniques provide both

a useful and economical approach for investigating the effects of several variables

on human transfer performance. Although this initial study demonstrates the

potential of the technique and includes representative equipment and procedural

variables of recognized importance in transfer, additional research that includes

other variables and more complex perceptual-motor tasks is necessary.

Ii
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TABLE 1

Coded Data Points of the RSM Central-Composite Design

Treatment Training Time Between Tracking
Condition Experimenter Tria'ls Trials Speed

1 1 -1 -1 1

2 1 1 -1 -1

3 1 -1 1 -1

4 1 1 1 1

5 1 0 0 0

6 1 0 0 0

7 2 -1 -1 -1 :

8 2 1 -1 1 --

9 2 -1 1 1

10 2 1 1 -1

11 2 0 0 0

12 2 0 0 0-

13 3 -1.633 0 0 -

1 4 3 1.633 0 0

15 3 0 -1.633 0

16 3 0 1.633 0

17 3 0 0 -1.633

18 3 0 0 1 .633

19 3 0 0 0I

20 3 0 0 0

25.
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TABLE 2

First-Order Regression Analysis of Variance Summtiry Table of Unreplicated and

Replicated RSM Central-Composite Designs

Unreplicated Design Replicated Design

Source df MS F df MS F

Regression (3) 301.32 2.21 (3) 592.57 14.08**

Number of Training Trials 1 156-10 1.15 1 281.33 6.69*

Time Between Trials 1 96.02 - 1 98.61 2.34

Tiacking Speed 1 651.84 4.78 1 1397.77 33.22**

Residual (16) 64.81 (36) 53.70

Experimenters 2 41.31 - 2 11.35 -

Lack of Fit 11 49.58 - 11 85.71 2.04

Replicationsa 3 136.33 23 42.08

Total (19) (39)

a Error term

* < .05

* < .01

wA
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Figure 1. Linear response surface of two levels of transfer performance as a

I function of number of trainirg trials, time between trials, and tracking speed
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Prediction and Cross-Validation of Video Cartographic Symbol Location Performance

ROBERT C. WILLIGES and ROBERT A. NORTH, University of Illinois at Urbarz,-

Champaign

A Response Surface Methodology central-composite design was used to

obtain multiple regression prediction equations of performance on a video cartc-

graphic symbol search task. Observers were required to locate the position of

dcsignoted target symbols on a series of maps displayed on black and white and

color television (TV) monitors. The variables used to predict both location and

latency performance were focus, density of nontorget symbols, visual angle of

the observe,, and TV raster lines per mm of actual map area. Prediction

equations were compared for black and white and color TV monitors through

collapsed and uncollapsed, within-subject eata analyses. Both analysis procedures

were compared in terms of resulting sensitivity and in terms of the predict;ve

validity of the regression equations as determined in cross-validation. It was con-

cluded that the uncollapsed, within-subject designs provided the better prediction

equations.
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INTRODUCTION

The rapid world-wide dissemination of current cartographic informution may

be facilitated by transmitting newly updated cartographic images by television (TV).

Fat TV displays to be used effectively for this purpose, the systems designer must

know the relationships between various display and situational variables and image

interpretability. By knowing the simultaneous effects of these variables, presented

in the form of performance prediction equations, the designer con make meaningful

tradeoffs among the many variables operating in the system.

0, method of predicting performance is to develop a theoretical model

describing the simultaneous effects of various variables of interest. An attempt to

incorporate several parameters into a predictive model of observer peiformance was

undertaken by Greening and Wyman (1970). The model is based upon a series of

probabilities associaoed with several variables in the task and represents the
culmination of several years of research on each of these varinbles. Although the
predictive validity of the model is reportedly high, the factors of time and cost

in developing such a model are the difficulties with this approach. In addition,

certain assumptions must be made to evaluate the various parameters used

in the model.

An alternative approach to theoretical model building would .e to derive

an empirical multiple iegrms.ion eq' ction which predicts observer performance as

a weighied combination of the specific display and situational variables of interest.

Regression equations are easily obtained,cnd the experimenter need only collect

enough data to solve for the various parameters of his regression model. For his

rk..ulting prediction equation to have high pred'ctive validity, however, the

experimenter must derive his prediction equation from a sample of data that adequately

represents the range and relationships of the variables of interest.

Williges cnd Simon (1971) pointed out that certair, Response Surface

Methodology (RSM) procedures a!, originally developed by Box and Wilson (1951)

m.ry provide economical and efficient techniques of co.lccting dota for deriviri- multip•e

SI
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regression prediction equations. In particular, the central-composite design appears

quite useful for this purpose.

This paper illustrates the use of a within-subject, RSM central-composite

design t- ýevelop multiple regression prediction equations of cartographic image-

1 searching ability as a function of several parameters. Specifically, prediction

equations of target location latency and number of correct target locations as a

function of displcy resolution, display focus, target density, and visual angle were

developed for map symbols displayed on both black and white and color TV monitors.

Resolution in TV display research is commonly defined as the number of TV

raster lines per symbol height. Shurtleff and Owen (1966) used this definition to

investigate legibility rrq.uirements for alphanumerics and found resolution to

influence accuracy and time required to identify symbols. Resolution requirements

for other symbols, such as stars, hexagons, rectangles, and circles, were studied

by Hemingway and Erickson (1969). PResolution was also studied by Johnston (1969)

1 in a task requiring pilots to locate and identify targets on a terrain model presented

on a closed circuit, TV monitor. Horizontal resolution in terms of number of TV

J raster lines significortly affected the time required for recognition and identification.

Preliminary investigations of resolution requirements of cartographic symbols were

1 made by Marsetta and Shurtleff (1966) who used various military unit map sy" - .

Interestingly, these symbols required a greater number of TV lines for recognition than

j alphanumerics of the same height. Recently, Wang anu Yacoumelos (1-70) studied

resolution of a closed-circuit, black and white teli " on system used for the

Sidentification of topographic :vmbols. These inv.... otors found resolution to be a

function of both TV raster lines per mm of actual map area and the spectral response

characteristics of the video system.

In a system in which the observer controls the system equipment, a variable

j such as focus becomes important. In the course of searching a wide area of topo-

graphic material, one might be required to reset focus several times; and, under

l .•conditions of environmental stress, focus might become less than perfect. No itudies

of this variable have been conducted on the TV transmissions of cartographic ýymbology
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although Hoffman and Greening (1966) studied a related variable called blur of

-* targets, the poor image quality due to movement across the TV screen.

In a target location task, the factor of density, or amount of nontarget

information, is also a determiner of the information processing capabilities of

an observer. Baker, Morris, and Steedman (1960) studied this variable in a

cathode-ray tube detection task and obtained expected results. Namely, as the

number of nontarget objects on the screen increases, search time increases and

accuracy decreases. No comparable work, however, has been done with a

video task involving search for particular topographic information.

The visual angle of the observer is important in determining his visual acuity.

The measure outlined by Morgan, Cook, Chapanis, and Lund (1963) for visual angle

is:

Visual Angle = 2 arctan (d/2D) (1)

where d equals height of the display (or object) and D equals the distance from the

observer to the display. A basic visual acuity curve is presented by Morgan, Cook,

Chapanis, and Lund (1963) which relates the probability of detection of targets to

the visual angle of the target. This curve is important because it is affected by the

other parameters of the system as shown in studies by Shurtleff, Marsetta, arnd

Showman (1966) and Baker and Nicholson (1967). Hemingway and Erickson (1969)

conducted a similar study and combined their results with the results of the two

previous studies. The curves from this combination show that performance is a function

of both visual angle of targets on the display and the number of TV raster lines per

symbol height.

One limitation of the RSM procedure for investigating the simultaneous

effects of these variables is that each variable included in the multiple regression

prediction equation is assumed to be quantitative and continuous. Of the variables

discussed, nontarget density, focus, and differences between the black and white

and the color display may not be quantitative. To include nontarget density in

1 the regression equation it is necessary for it to be semlqantified by defining it

in terms of the number of nontarget symbols per map area displayed. Likewise,
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Sfocus can be arbitrarily quantified by defining it in terms of distance from the plane

of sharp Image. To investigate the effect of different monitor systems, regression

equations predicting performance as a function of display resolution, display focus,

visual angle, and target density could be derived separately for the black and white

TV monitor and for the color TV ic.onitor. Equal response contours resulting from

each prediction equation could then be compared to determine the differential

effects of the two TV monitor systems.

Besides illustrating the use of a within-subject, RSM central-composite design,

the major purpose of this paper is methodological. Clark and Wi~liges (1972b) discussed

two ways of analyzing data collected from a RSM central-composite design in which

replication occurs over the complete design. The data could be collapsed across

subjects prior to analysis, thereby reducing the design to the traditional RSM central-

composite design with repeated observations only at the center; or, alternatively, the

collapsed data could be analyzed directly. Both of these analysis procedures were

compared in this study in terms of the resulting sensitivity of the analysis and in

terms of the predictive validity of the regression equations as determined through

cross-val idation.

METHOD

Apparatus

The TV system used was a closed-circuit system consisting of a standard 525-

line black and white Concord MR-800 monitor, a Setchell Carlson 9MC914 color

monitor, and a Sony DXC-5000 color camera. The camera was provided with a

VDC-1100 close-up lens with a variable focal length giving the system magnification

capability.

Subjects

The subjects who served as observers of the cartographic displays were Army

Reserve Officer Training Corps cadets and were familiar with topographic symbology

through their course work. These cadets were paid $6.0U for participation in the

I experiment.

r
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Tasks and Procedures

The observer's task was to locate the position of target symbols on the display

monitor. Three point symbols, water towers, schools, and churches, were employed

as targets, and the observers were shown examples of these three target types before

the session began.

Each experimental condition consisted of a three-trial set. On each trial,

a different symbol was used as the target. Within any given set of trials all targets

were used but the order of usage was counterbalanced. Each observer sat in front of

the monitor and was provided with a long pointer to locate target symbols. The

monitor was blanked before each trial began, and the observer was told which

symbol was the target for that trial. When the display was revealed, the observer

had 60 seconds to locate the target. The three possible outcomes for each trial

were: 1) the observer correctly identified the target during the 60-second period,

2) the observer incorrectly pointed to a nontarget symbol, or 3) the observer failed

to make a response. In the first case, the time was recorded for detection, and the

observer was scored as correct. In the second and third cases, the time recorded

was 60 seconds, and the observation was scored as incorrect.

Experimental Design

A four-factor, second-order RSM central-composite design was used (Cochran

and Cox, 1957). Basically, the central-composite design consisted of a center
2K

point, a2 factorial portion, and 2K additional points. Each of the four variables

occurred at five ievels coded as -a , -1, 0, +1, -ta where ± 1 defined the levels

of the factorial portion of the design, - a defined additional 2K points, and 0 defined

the center point. The design was blocked across days to insure that any differences in

testing days would not affect the paronetcrs of the prediction equation. To insu.e

orthogonal blocking, a coded value of a equal to 2 was chosen. (See Clark and

Williges, 1972b, for a discussion of the calculation of cx.) Table 1 summarizes the

coded value coordinates of the darn points comprising the design.

Insert Table I about heie
----
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Because the design was within-subject, each of the six subjects received all

30 treatmert condition_- shown in Table over a three-day period with one block of

10 tre.tment codition5 presented each day. To minimize the possible differential

effects of testing d, es, blocl ordei of presentation was completely counterbalanced

across the six subjects. Table I shows that the central-composite design was blocked

such that one half replicate of the 24 factorial design was presented in Block 1,

and the other half replicate woa prestntcd in Block 2. The fourth-order interaction

was chosen as the defiting rc:latior.dhip for each. half replicate so that no first- or

second-order effects would be confounded witt. blocks or with each other in the

second-ordei RSM ceiitro'-comp|,-ite d( sign. Block 3 was composed of the g

component of tie design. The ., vuiue of each variuule appeared with only the

center (0) value of the other factors. The (cLter point (0, 0, 0, 0) was observed

twice in each b!ock in order to obtain an estimate of experimentl error.

The four factors incLmd in the design were foc ,s, vi-ual angle, TV raster

incs per mm of ot. mpc.u,, l,, uw. orer.ity. Focus we' ve e,i b/ changing the

distance of the TV camera from the plone of shaip image. 'he levels were 4, 3, 2,

1, and 0 cm from this plane. These values corresponded to linear trarsformations

of the RSM central-composite design coded values o -2, -1, 0, +1, +2, respectively.

Visual angle was measured by the arc subtended by the dis,,,'yed map as determined

by Equation 1, and the actual values were 5.00, 6.75, 8.50, 10.25, and 12.00

degrees. TV raster lines per mm was varied by adjusting the focu' lergth of the lens,

resulting in real-world values of 4, 5, 6, 7, and 8 TV ruster lines. Density was

measuied by the number of nontorget symbols per map area displayed with actual

values of 450, 350, 250, 150, and 50 nontarget syrrbols. Examples of mops used

in this study are shown in Figure 1, which also illustiates 'he five levels of density

and the different target symbols used. Map areas were selected from the 1:24,000

series of United States Geological Survey (USGS) maps of Illii.ois. To contre! ..'4'Jinst

learning effects, sufficient maps were collected so that an observer v*ewed each rr.,,•.

only once.

.1 Insert Figure 1 about here

- --
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RESULTS AND DISCUSSION

The data were analyzed using two different strategies to determine multiple

regression equations for prediction as discussed by C lark and Williges (1972b).

First, the data were collapsed to produce one score for each treatment condition

before analysis. Second, all data for each subject for each treatment condition

were analyzed directly. Both analysis strategies were compared and further evaluated

in terms of a subsequent cross-validation study. Details on the computer program used

to conduct the analyses are discussed by Clark, Williges, and Carmer (1971).

Additional details on the mathematical procedures are presented by Clark and Williges

(1972a).

Collapsed Median Data Analysis

The uata for this analysis were median values across all six subjects on each

of the 30 experimental data collection points listed in Table 1. Obtaining a collapsed

or median score for each point allowed the data to be analyzed as a standard, blocked,

RSM central-composite design. With collapsing, subject effects were eliminated, and

experimental error was estimated by the six center points of the RSM central-composite

design. The median was chosen as the collapsing statistic so that a markedly different

subject would no) heavily bias the collapsed score. Calculatfons of the multiple

regression and the subsequent cnalysis of variance fol:owed the general calculation

formulae presented by Williges and Boron (1972).

The major results of these analyses were the multiple regression prediction

equations. Separate equations were derived for the black and white monitor and

the color monitor. The dependent variables were .atency to locate correctly a target

and number of correct symbol locations. The resulting first-order prediction equations

were:

Latency (black and white) = 38.56 - 2.76F - 6.36D - 0,49V - 1 .47T (2)

Latency (color) = 40.04 - 5.540 - 3.60D - 3.71V - 4.081 (3)

Correct Locations (blac!' and white) = 1.76 + 0.211F + 0.34D

+O.09V + 0.12T (4)
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Correct Locations (color) = I .67 + 0.46F + 0.29D + 0.27V + 0.28T (5)

The equations represent the coded values used for F, focus; D, density of nontarget

symbols; V, visual angle; and T, TV raster lines per mm of actual map. The

respective multiple correlation coefficienrs were .779, .789, .641, and .848.

Although the weightings of the various parameters differed for the black and

white system and the color system, the general effects were consistent. Latency

decreased as the coded values of the four predictors increased. The coding was

such that as latency decreased, sharp focus, visual angle, and TV lines increased

and nontarget density decreased. Similarly, the number of correct target locations

increased as the coded values of the various parameters increased.

The reliability of the weightings (partial regression coefficients) of the four

parameters of each first-order prediction equation can be tested in an analysis of

variance. The various F ratios are summarized in Table 2. Focus was a significant

predictor in all four equations; however, density was significant only for the black

and white system. Visual angle and TV raster lines were not significant (p >.05)

in any of the collapsed prediction equations.

Insert Table 2 about here

Table 2 also summarizes the F tests conducted on blocks and lack of fit.

Blocks, as expected, was not significant (p> .05) because the order of block

presentation over days was completely counterbalanced across the six subjects.

Lack of fit was also not significant (p > .05). Even though a second-order RSM

central-composite design was usad for data collection, thereby permitting calculation

of a complete second-order equation, the nonsignificant lack of fit suggests that

these second-order partial regression coefficients (quadratic effects and linear x

linear interactions) may be unreliable predictors if added to the first-order equa;ion.

When the experimenter declares the lack of fit nonsignificant )rd fails to

calculate a higher-order polynomial, he is implicitly accepting the null hypothesis

and must consider the probability of declaring an effent nonignif;niant when it ,:

I
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actually present. This occurrence, commonly known as a Type II eiior, can be

reduced by increasing the power of the statistical test. One procedure for indirectly

increasing power is to choose a higher alptia level or increase the probability of a

Type I error. This consideration is noteworthy in connection with results obtained

in this study for two of the analyses, namely, number of correct locations and

latency on the black and white monitor. If lack of fit were tested at on alpha

level of .25, for example, it becomes significant. Fitting a complete se,6nd-order

equation to both dependent variables of the black and white system as well as both

equations for rhe color monitors, however, yielded no significant second-order partial

regressio" ;eights. The experimenter, consequently, must decide how much he is

willing to trade off a Type I error to reduce a possible Type II error.

Uncollapsed Within-Subject Data Analysis

The second analysis used the data of all six subjects' scores for each experimental

condition. The center point (0, 0, 0, 0) of the design represented in Table 1 by ob-

servation numbers 9, 10, 19, 20, 29, and 30, was used only once for this analysik.

When oniy one center point is used, the orthogonality of the blocks and treatment

effects is not present (Clark and Williges, 1972b). The & length must be changed

to accommodate the analysis of blocking effects in this case. This would change the

value of the variables for observations 21 - 28. For this analysis, the center point

observed first by each subject was used. Because its occurrence fell in different

blocks due to counterbalancing and because blocks was not significant in the

collapsed analysis, no consideration was given to a blocks effect.

Calculations of the multiple regression followed the same procedure used

with the collapsed data although more observations were present. The analysis of

variance of the within-subject design required changes in the calculation of error

variance. Error variance was obtained from the sum of square' of the replication

of the data points (as defined by Wiiliges and Baron, 1972) corrected by subtracting

the main effect of subjects. The main effect due to subjects refers to intersubject

variability, and this subject variation was calculated using the following general

formula:

69



Williges and North 11
NS ( -

Subject SS = n S (-Sp)2 (6)
p= P

where 'is the grand mean of the dependent variables across all observations; YS

is the mean of the dependent variables across the observations comprising P

the pth subject; nS is the number of times that each subject is observed (W constant

value for all subjects); and NS is the number of subjects comprising the entire

design. (See Clark and Williges, 1972o, for additional details as to the derivation

and calculation of a within-subject RSM central-composite design.)

The resulting first-order, coded, multiple regression prediction equations

of target location latency and number of correct symbol locations for each TV

monitor were:

Latency (block and white) = 37.60 - 3.32F - 5.28D - 0.52V - 1 .39T (7)

Latency (color) = 39.76 - 4.67F - 3.03D - 2.63V - 2.95T (8)

Correct Locations (black and white) = 1 .69 + 0.19F + 0.33D

+0.06V +0.11T (9)

Correct Locations (color) = 1.62 4 0.36F + 0.19D + 0.17V + 0.22T (10)

The respective multiple correlations were .464, .476, .424, and .500.

Although the prediction equations resulting from the uncollapsed analysis

were very similar to the prediction equations obtained from the collapsed analysis,

the multiple correlations were substantially lower. In other words, the prediction

equations accounted for a much smaller percent of total variation when the within-

subject variability was included in the uncollapsed design.

Besides retaining the intersubject variability, the within-su.bject design

added more degrees of freedom because replication occurs over the entire design.

Increasing the degrees of freedom should result in more sensitive F tests of the partial

regression coefficients. The various F ratios resulting from analysis of variance on

the four uncollapsed, within-subject regressions are summarized in Table 3.

Clearly, more first-order purtial regression weights were reliable in the uncollapsed

analysis than in the collapsed analysis. In addition, it appears that all four

I
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predictors were important in determining performance using the color monitor, whereas

focus and density were the primary predictors using the block and white system.

Reliable subject differences also ocrurred under the black and white system, but

these effects were completely orthogonal to tho prediction equations.

Insert Table 3 about here

The discrepancy between the number of reliable predictors for two TV systems

is best explained by examination of the factors contributing to the overall resolution

of the two systems. The color imogq, was generated by combining three video signals

from red, blue, and green guns; and the picture on the color monitor was a combination

of the three pictures produced by these signals. The registration of these pictures

was often less than perfect; and, consequ..ntly, the overall iesolution of that system

was somewhat degraded. The black and white monitor, on the other hand, received

video signals from the color camera that provided uniform spectral response char.octeristics

which resulted in higher overall system resolution.

-. TV raster lines per mm of actual map and visual angle were both found

to be strong determinants of performance in the studies by Shurtleff (1967) and Baker

- and Nicholson (1967). The results of this study, however, suggest that the effect

* of TV raster lines is limited by the overall resolution of the television systems.

Wong and Yacoumelos (1970) obtained similar results in that they found overall

resolution to be a function of both TV roster lines and spectral response characteristics

for color symbols.

Figure 2 presents typical response surfaces that can be obtained from the

prediction equations. The axes represent the two significant predictors, focus and

density, for the latency score on both the black and white and the color systems as

predicted by the uncollapsed regression equations (Equations 7 and 8). Number of

TV raster lines was held constant at six, and the visual angle was maintained at eight

degrees. The three plotted contours for each monitor system indicate levels of

performancc in terms of loco;iuri lutency scores of 35, 40, and 45 seconds. These

I curves illustrate the tradeoffs that must be made between the two independent

1 .71
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variables to maintan a gven level of latency. By superimposing the contours of the

"I black and white syslem on the color system, differences in these two nonquantitative

variables can be determined. The weightings of focus and density resulted in much

steeper slope. on the color system response contours than the surface plotted for

the black and white system.

Insert Figure 2 about here

Information presented in terms of these contour plots has important

implications for the system designer. If camera focus is to be set and reset during

the scanning of topographical information, for example, the system must have the

capability of focusing within ranges that will not adversely affect performance.

Density of target symbols represents a variable that cannot be easily controlled,

because cartographic material varies in density of symbols according to area. But,

the results of this study suggest that a nonsystem variable such as density may

place restrictions upon the ranges of system variables.

The complete first-order multiple regression analysis performed on the

uncollapsed data produced a nonsignificant lack of fit in oil cases as shown in

Table 3. This suggests that performance was best defined by a linear relationship

between the variables, and if higher-order coefficients were used, they might not be

reliable. Previous studies, however, have shown that this is not the case for TV

raster lines per symbol in alphanumeric recognition. A possible explanation for

the nonoccurrence of strong quadratic or higher-order trends may be that the

strength of the effects for the other variables, such as focus and density, was great

enough to reduce or minimize the higher-order effects of TV raster lines over the

range of values used in this study. Care must be taken not to extend the results

of this study beyond the range of variables tested.

It is also possible that the experimenter is committing a 'ype II error when

he implicitly accepts the null hypothesis, and he fails to isolate higher-order effects

due to TV raster lines. Because the RSM central-compositu designs were second-order,

an additional complete second-order regression analysis was conducted on the

72
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uncollopsed data. No significant second-order effects (p> .05) occurred for the

color monitor. Both regression equations for the black and white system, however,

resulted in significant second-order effects. In terms of latency, both the Focus x

Focus quadratic effect and the Density x TV Lines linear by linear effect were

significant (p <.05). The Density x TV Lines partial regression coefficient was also

significant (p < .05) for number of correct locations on the black and white monitor.

Additional data are necessary to determine whether or not these effects become

rel iable predictors.

Cross-Val idation
From a methodological point of view, cross-validation data served two

important purposes in this study. First, these data could be added to the original

data to determine if various second-order effects became reliable. Second, and more

important, the cross-validation data provided an indication of the predictive validity

of the original equations. Specifically, the predictive validities of both first- and

second-order prediction equations derived from the collapsed and uncollapsed

analyses were compared. A more detailed discussion of the double cross-validation

data is presented by North and Williges (1972).

Cross-validation data were obtained by replicating the original design.

Care was taken to replicate as closely as possible the design, procedures, equipment,

task, and stimulus materials. Six new subjects, who were also Army Reserve Officer

Training Corps cadets, were used approximatel>, six months after the original data

were collected.

Combining the cross-validation data with the original data resulted in the

following uncollapsed, first-order, within-subject, coded regression equations:

Latency (black and white) = 40.09 - 3.42F - 4.65D - 0.88V - 1 .88T (11)

Latency (color) = 41.34 - 4.18F - 3.03D - 2.33V - 3.52T (12)

j Correct Locations (black and white) 1 1 .58 + 0.20F + 0.33D
+0.04V +÷O.1iT (13)

Correct Locations (color) = 1.55 + 0.32F + 0.23D + 0.1/6V + 0.23T (14'

1he respective multiple correlations were .453, .503, .431, and .500.

I '73
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Even though both the combined, within-subject equations were extremely

similar to the original within-subject equations (Equations 7 through 10) and the

multiple correlations were virtually the same, the linear effect of TV Lines became

a reliable predictor for the black and white monitor in terms of the combined within-

subject prediction equations of both the latency and the number of correct locations.

The various F ratios for the four combined, first-order prediction equations are

presented in Table 4. Note that the additional degrees of freedom gained in the

combined data were added primarily to the error term, thereby providing more

sensitive F tests. In addition, lack of fit was significant (p < .05) for the correct

locations prediction equation using the black and white monitor. Results of the

complete second-order regression on correct locations demonstrated the Density x

TV Lines partial regression weigh" to be reliable (p <.05) using the black and

white monitor. This agrees with the results of the less sensitive within-subject

analysis of the original data. As discussed earlier, the original within-subject data

also suggested possible second-order effects for predictions of latency on the black

and white system. Lack of fit was significant at the .10 level in this combined analysis.

The complete second-order regression on these data showed both Focus x TV Lines and

Density x TV Lines to be significant (E < .05). These latter results only partially

agree with the original within-subject data analyses. No second-order effects were

significant (p > .05) in the combined analysis of the color monitor.

Insert Table 4 about here

The maior results of the cross-validation data analyses were the comparisons

of the original multiple correlation, to cross-validated multiple correlations to

estimate the predictive validity of the equations. The original multiple correlation

represents the correlation between the original sample of data (derivation sample)

and the scores predicted by the resulting regression equation. The cross-validation

multiple correlation is the correlation between the values obtained on the secondsa
sample of data (cross-validation sample) and the scores predicted by the original

2.1
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regiession equation. Reduction or ;hr-inko'ge was expected in ti're cr,;.-volidation

multiple correlation as compared to the oiginci" correlatior ot this study due maini',

to the new sample of subjects and tes;ting limes. The obtoined cross-validated

muluple corrPr!itians car. be compared to s.1 mnkage of the population multiple

correlatioi am estimated b> the modified \ rierry formula (Lord and Novick, 1968;

Herzberg, '1969) in order to evaluate the elative amount of shrinkage obtained

throiugh the col lapsed and uncol lapsed analyses of the ori- .,al study.

Table 5 presents the various multiple :-,.: ns for the e-omplete first-~

older prediction equation. When the co upsed prediction equatK( were u3ed tu

predict coilapsed values in th,ý. cross-validation sample, `ie obtained cross-

volination multiple car re~atian, RAj2 co,-Pcr-.~d favorably with the expected

sI-rinkaqe, RS as shown in the upper pc4ý:Ion of Table 5.

Insert Table 5 ooout he.-e

G3 enerally, a p~ediction equation is used to predict individual subject

performnance rcther than tlie aversice of a particuk'r sample of s.'bjects. This

prediction is analogous to i,,edicilna unccollupsed data. Using the uncol lapsed

piedi(t~on ecc''~of tl'e o 'icJi sample to predilt these i.w'TvdU0l ýLOIes' in

tire cross-validation, R',, corrpore.1 favorably to R as shovn in the lower portion

af Table 5.C th-e orher lethe center portion of Table 5 sho,'is that R,., wv0F

,ubstontial ly iKwver thanor wher. tle collapsed prediction ocquations, were used to

predict a new sample of iridividuol sublect performance.

BeCOAu~ the o~rigin~al multiF le correlat'ion, R/', Was mrjc :her usin.g the

c~olip'sed equat runs rather than the unzollcipsed data, one -.~ 1 :-t

6elie ,inn 'hut the pred~ctie worth of the collcapsed regression equc is better

th0a1 tke' L'rICOllap ud eqr~tCiuns). 11hese dato. hc-:-c~ei, st~ggest that tk-e collapsed

mr,;t~rle corvelation, rn'jy grasly overstate thie value of the cua)rt ion if they are u~ed

t" ~u~ indiv :dual tukieit pcurforrnonce, whereas, rnultipie corfr lations from the

Ufln-u Ii p',Cd Or ,ii0.1n-.~ub*-ert design(s provide iowei hut frarorE rea1 istic estimrate, of

the pre.d c 0 ')w. of the r -jr c~siar. equot ions.
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The analogous multiple correlations were calculated using the complete

st, ond-order regression equations rather thatt the first-order equations. These

cot reiat;orls are presented in Table 6. Essentially, tl-e same shrinkage results occurred

in cumparing thne collapsed versus uncollapsed analyses as presented for the first-

order equ'ations. (.,ve 'ill, the original multiple correlations, R1.were obviously

higher for Ihe secoi-d-oicdei eq lions as compared to the first-order equations

because more parameters were u~ed (1 4 partial regression coefficients in the second-

order equation as compared to only 4 in the f irst-order equation) . Because no f irst-

order analyses of the original collapsed and oncollapsed data resulted in significant

lack of fit (pj' 05), the resulting second-order partial regression weights iright'e

unreliable ond contribute to greater shrinkage in cross-validc'cion. Indeed, this

appears to happen because all but one of the RA values were lower than the

predir ted shrinkage, RV vo~ueý Even more striking9 is the, comparison of cross

validured multiple rorrelal ions, R. I , 21of both the first- and second-order regression

eqUations shown in Tc~bles 5 and 6, respectively. In all but one case, the second-

order P/- values were lower that, the corresponding first-order P.- values.
12 12

Consequently, these tenLOUS second-order effects appear to increase rather than

reduce shriniKage.

Insert Table 6 about here

Thf se data, then, imply that tý.e more parsimonious appi-oach of sc'e-cting

the order of the regression Lqua~tin in accordance with the test of lack of fit provides

the more vajlid and !jble c(verall pridication eqaiation. or', on the other hand, ti~e

RSM cpnti :31-corrposite design is beisig used for exhaustive search and exploration of

a response si foe the experimenter may wss I>' cpt to retain marginally reliabie

higher--order effects in order to ýeairh thoroughly all poss'ble areas of activity in

the response surface.

One iimiiuiion of' the preserir cross-vaiidariorr 6010 wOs The gsneiciiy iow

value of the original multiple correlation! of the with in-subi ect analyseý. Shrinkojqe
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on t1-e collapsed data could be somewhat limited by floor effects of these correlatioiis.

Nonetheless, all the results are consistently in the predicted direction; consequently,

higher R-j' values would probably only fvrther sub.,tantiate these results. The law

multiple correlations obtained were not altogether unexpected because of procedures

used in measuring latency and the smallI number of targets used in the location task.

CO NC LUS ION S

Two genera! methodological conclusions appear warranted. First, uncollapsed

or within-subject analyses as suggested by Clark and Wil liges (1972b) appear to

provide a more sensitive analysis ns well as more realistic estimates of the preditive

worth of the regression equations as compared to collapsed analyses when predicticons

of indivicdual performance are made. Second, if the RSM cent-ol -composite design

it. used prirmarily to provide a general purpose prediction equation, the experimenter

may wish to minimize the number of paramt ers in the prediction equation to

minim-izv 0~ if a,9e by determining the order of the prediction equation in accordance

with thr. iL::.t 0? ltucl , fit.

It is clear from the pre~sent results that KSM cenitral -composite design tec~hniq-jes

are successful in providingj ,ffi ient procedures for generatincl multiple regressicn

prediction equctions of var. ý%~crtnt in ccatooraphic symrbol 1,:caict icn oks.

Interestingly, Lo~h , nquantital.- d quantitative variable,, can be h.andlled.

Nong-jonftittiv'e v'ariables such -is d -fen( es between black and white and color

monitor, rriu~t b,- irvestyqated iw terr. ( 'e.nrote prediction equotions . Focý-% o~r

dersity r~preient -'jriobleý -;,i'ch can '. );ir:irily qu.;ritilied to be include~d Ir. th.2

o-redlcrion equotion. /jst~iial~! crc -ister lines, c-ri the other hand, represent

q,,ai titativcly scaled va~ifbles thut -irre v, arnencle to; :nclusion ii. !piedictiufI

j eqiuo'tons.
T' ~uii~ . u i' 'Iu itunj'? TO To i-riestad trie ronlpiiK

'1 ~,nsl ;p o~f shrnultcuueof... tifeois 'i c . . r'gItelpletai-

">.I r f It, ~ '*: . . i'.s pb cu-u be d ~fnn d , Irl ti-,rrrI
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variables of recognized importance must be considered in the prediction equations.

Semple, Heapy, Conwcy, and Burnette (1971) reviewed several variables of importance

in cathode-ray tube displays that were not investigated in this study. Examples of

these relevant research parameters mentioned are brightness, contrast ratios,

surround illumination, and video bandwidth. Additionally, the capability of RSM

to handle nonquantified variables allows study of such items as mop type, techniques

of cartographic symbol design, and methods for briefing an observer prior to the

task. Through the use of the RSM central-composite design, the investigator may

now have a method of meaningfully investigating all of these variables.

I
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TABLE 1

Coded Values for Data Collectior. Points for Second-Order RSM Central-Composite

Design Including Four Variables with Orthogonal Blocking

Treatment
Con tition Block Focus Density \ sual Angie TV Raster Linej

1 1 1 I1- -1

2 1 1 1 I 1
3 1 1 -1 -1 1
4 1 1 -1 1 -1
5 1 -1 1 1 -1
6 1 -1 1 -1

S7 1 -1 -1 1'78 1 - -1 -1 -1

9 1 0 0 n 0
10 1 0 0 0 0

11 2 1 1 1 -1
12 2 1 1 -1 1
13 2 1 -1 1 1
14 2 1 -1 -1 -1
15 2 -1 1 1 1

16 2 -1 1 -1 -1
17 2 -1 -1 1 -1
18 2 -1 -1 -1 1
19 2 0 0 0 0
20 2 0 0 0 0

21 3 0 0 0 2
22 3 0 0 0 -2
23 3 0 0 2 0
24 3 0 0 -2 0
25 3 0 2 0 0
26 3 0 -2 0 0
27 3 2 0 0 0
28 3 -2 0 0 0
29 3 0 0 0 0
2'0 3 0 0 0 0

I
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i 1 m fp LIST OF FIGURES u

Figure 1. Examples of map dis~play materials showing the three target symbols used

and the five levels of density.

Figure 2. Response surface contours for the black and white and the color system

latency scores showing tradeoffs between focus and density at eight degrees visual

angle and six TV raster lines per mm of displayed map.
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Mills and Williges

Performance Prediction in a Single-Operator Simulatcd Surveillance System

ROBERT G. MILLS, Aerospace Medical Research Laboratory, Aerospace Medical

Division, Air Force Systems Command, Wright-Patterson AFt, Ohio, and

ROBERT C. WILLIGES, University of Illinois at Urbana-Champaign

A semiautomatic radar surveillance system was simulated using a time.-

compressed real-time cathode-ray tube display. Subjects were required to detect

targets entering the surveillance area, initiate automatic tracking of these targets,

and reinitiate lest tracks when automatic tracking failed. Awithin-subject

Response Surface Methodoloal (RSM) central-composite design was employed that

permitted simultaneous investigation of the effects of five system parameters on

surveillance operator performance. Response surface fits (second-order polynomials)

were obtai.'.ed and analyses of variance were conducted to describe these effects

on two dependent measures of performance. Results support the contention that

oe~rator performance may be dependent upon complex relat ionshis among the

five system parameters tested. Furthermore, a RSM central-composite design

provided an efficient metho,' for obtaining data and quantifying these relationships.

rIi i i• -• . •• . , •! ..
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INTROD UCTION

The main purpose of this report is to present the results of a study of

operator capabilities in performing the surveillance tasks of aircraft track

initiotion and maintenance. The surveillance tasks were performed while

monitoring simulated, digitized, and time-compressed radar returns displayed

on a computer-graphics display.

Track initiation and maintenance ore major functions of present-day

semiautomatic air traffic control and surveillance systems such as the Airborne

Warning and Control System (AWACS) and new FAA systems p esently being

developed. Despite the importance of these tasks, however, they have received

little attention from human engineering researchers. As a result, human engineering

performance criteria important in the design of modern surveillance systems are

largely unknown.

Often in these systems radar returns are displayed using time compression

of successive radar antenna scans for visual display in real time. Time compression

is achieved by storing the digitized returns from successive scans of a radar antenna.

These scans are displayed rapidly in proper temporal sequence during the time

required to obtain new returns from the next antenna scan, thereby providing the

operator with a visual history of scans. As each new scan is stored it is added to

-the sequence, and the oldest scan is deleted. The effect of this type of display

is to generate visible trails for coherent returns such as from a moving aircraft and

random points for return. from incoherent sources such as ground, sea, or atmospheric

clutter.

The track initiation task requires the operator to initiate automatic traotking

of returns potentially belonging to a target. Usually a target is designated with a

light pen or cursorand a switch is act;vated to initiate a new track. After track

initiation an alphanumeric track block is displayed adjacent to each new return

from a target.

90
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Track maintenance is required when a target has been lost by the autort tic

tracking facility. A failure in automatic tracking is evident to the operator when

drifting or misplacement of the alphanumeric track block occurs. Track maintenance

is performed in the same manner as track initiation, except that a different switch

is used to indicate that the track is old.

A secondary purpose of this report is to provide an example of a rather

complex application of a Response Surface Methodology (RSM) central-composite

design to th - study of human performance. The complexity of the application

arises from the fact that the study presented herein is multivariote and investigates

the effects of fCve parameters (factors), each with five lvels.

Williges and Simon (1971) indicated that the utility of RSM central-

composite designs is that they provide a satisfactory solution to the problem of

conducting research studies that are necessarily multivariate and which consist of

a large number of parameters and levels at parameters to be investigated. Typically,

a researcher faced with such a study is forced to select a small set of parameters

0and parameter ;evels to be investigated using an analysis of variance design.

This was precisely the procedure used in three previous studies of surveillance

operator performance (Millsand Bauer, 1971a; 1971b; in press). Each of these

studies explored the influence of a limited set of air surveillance system parameters

on operatk performance. It was recognized rather early, however, that all the

parameters under separate investigation were present concurrently in the system

and were probably interactive. To evaluate the simultaneous effects of thcse

parameters it was necessary to conduct a multivariate study involving a large set

of parameters and parameter values.

These previous studies served as the bas;i for the presen; study in that they

led to the establishment of a minimum of five parameters which could have a

simultaneous influence on operator performance. Thus, it was determined that

target introduction rate (number of aircraft entering a surveillance area/unit time)

a powerful factor influencing operator performance. The operational range of

introduction rates was also established.I
I <J19'
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Clutter ce.nsity (the number of pieces of clutter per square nautical mile

or total number per scan) can also influence performance, and the range of

parameter values hadbeen established. However, as with introduction rate, the

full continuum of effective values of clutter density had not been investigated

in a single study.

Target velocity was of particular interest because the data from one of the

eaglier studies (Mills and Bauer, in press) suggested that performance improves

as target velocity is increased to some optimal value. Fi-rther increases in target

velocity, however, may result in performance degradation. Again, an investigation

using a full range of target velocities was necessary in order to establish this

relationship.

Two other system parameters not as yet investigated were blip/scan

probability (the probability that a target return would be displayed over a series

of radar scans) and clutter replacement probability (the probability that a piece

of clutter would be replaced by a new piece of clutter on the next scan). Because

these parameters can be expressed in terms of probabilities, 0.0 to 1 .0, a prior

examination of their range was not necessary.

The effective ranges of each of the parameters of interest had been

established. However, in no case had the full range of any of these parameters

been investigated nor had the combined effects of more than three of the

parameters been investigated in a single study.

METHOD

Apparatus

An IBM 2250 cathode-ray tube (CRT) giaphics terminal was used for control,

display purposes. This terminal had a CRT display surface of 144 square inches

(12 x 12 inches). The CRT was coated with P7 phosphor which had a persistence

time of 400 milliseconds. The terminal light pen, alphanumeric keyboard, and a

programmed function keyboard consisting of 32 response keys were used for

operator communication w'th the computer.

n n I in u I
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Experimental Display

Figure 1 is an illustration of the CRT display used in this study. The figure

is a pictorial iepresentat'on of a time-exposure photograph taken over six scans,

or two radar updates, during an early 20-second period of a mission. A number of

targets are shown in Figure 1, several of which have numeric track blocks and, thus,

have been initiated. The history of each target trail contained five returns.

Insert Figure 1 about here

The surveillance area simulated was square in shape and represented an

actual area of 90,000 square nautical miles. The simulated area was displayed

on the CRT in an area of 93.51 square inches and was enclosed by latitude and

longitude markings.

Simulated radar returns from targets and clutter were displayed as blue-white,

well-focused points. During the persistence period of the phosphor, the points were

yellow. The points were approximately 0.01 inch in diameter.

Time compression was accomplished by storing the returns (target and clutter)

from each simulated scan of the antenna. During an actual mission simulation,

these scans were displayed in real time in a time-compressed mode. The time

parameters of display presentation may be found in Mills and Bauer (in press).

Clutter for each scan was distributed statistically according to a

combination of uniform and exponential distributions. This method provided a

realistic distribution of clutter, unevenly distributed over the surveillance are'l

and containing clumping.

A position error was present in displayed clutter and target returns. Position

error simulated the error resulting from signal variations, digitization of analog

signals, etc. Target and clutter points were displaced from their true position in

X and Y Cartesian coordinates according to a normal distribution with mean error

equal to 0 and standard deviation equal to 1 nautical mile.

93
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In effect, position error prohibits the display of a return from the some

stationary object from being in exactly the same place in each of a series of

scans. As a result, the same clutter point tended to wobble from scan to scan.

Returns from a target flying a linear vector were displayed irregularly along the

true path of the target.

Tasks

Each subject's tasks were to monitor his surveillance area and to perform

the track initiation and maintenance functions. The initiation function required

the subject to complete three response actions in any order. These actions were

as follows:

1. Use a light pen to indicate the latest displayed return of the set

of five returns suspected of representing a target.

2. Input, via the alphanumeric keyboard, the numeric signature

(up to three digits) to be assigned to the new track. The

numeric input was the integer of the last track initiated

increased by the value 1.

3. Press a response key labeled NT (new track).

The maintenance function was performed in the same manner, except that

the subject pressed a response key labeled OT (old track) instead of NT. Also,

the numeric signature inputed was the signature of the track to be maintained.

4 A subfunction of the maintenance task was referred to as demand

maintenance. On a probabilistic basis (probability of track failure equaled 0.01) a

track failure was caused by displaying a track block a random distance from ti.e

set of returns belonging to a target. In additionr an asterisk was placed to the

left of the signature (see Figure 1). The presence of the asterisk was an indication

to the subject to maintain the corresponding track as soon as possible and is

analogous to the "trouble track" indication used in certain operational surveillance

systems.

A correct maintenance operation restored the track block to its correct

coordinate position on the next update. In the case of demand maintenance,

9.
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the asterisk was also removed. As long as a larget remained in the surveillance area,

its track block could be restored by a correct maintenance operation. For example,

a correct maintenance action has been performed on Track 4 in Figure 1 after the

first update shown. The result, as shown in the figure, is a repositioning of the

displayed numeral 4 closer to its target on the second update.

When an initiation or maintenance error occurred (for example, attempting

to initiate an old track or incorrect track block encoding), an audio signal was

immediately returned, indicating that the operation performed had been unacceptable.

In the case of correct initiation, the encoded numeric signature track block was

automatically cssigned and displayed to the right of the latest return of the target.

A counter at the upper right of the screen (see Figure 1 ) provided the

number of the next track to be initiated. Encoded infornr3tion was displayed at

the upper left of the screen as it was inputed.

Figure 1 contains several initiated target tracks with their associated track

blocks shown in two updates as a result of the time-exposure representation. For

example, Track 15 in the lower left quadrant of Figure I has two track blocks of

the numeric 15. The upper numeric designates the latest return; the lower numeric

is from the previous scan and is visible here only because of the time-exposure

format. The number 20 at the upper right of Figure I indicates that the next track

initiated will be numbered 20. Also shown, is a demand maintenance track, Block

19, and its target trail.

The coordinate position of each track block was updated wilh each- s•,

simulating the automati: tracking facility of the computer. Error in this function

was simulated by modifying the position of each new track block by a small error

term. On the display the track block appeared to have a slight, nonlinear drift in

its path (see Figure 1, Track Blocks 8 and 13). If not maintained, the track b!ock

would eventually drift out of the surveillance area and disappear. This could

occur either before or after the correlated target exited the surveillance area.
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Experimental Design

_ The experimental design employed a five parameter RSM central-composite

. design. The five parameters were blip/scan ratio (BSR), target introduction rate

(I1R), clutter replacement probability (CRP), clutter density (CD), and target

velocity (TV). Each parameter had five experimental levels determined by the

coded values (-2, -1, 0, 1, 2) according to a second-order, central-composite

design as found in Cochran and Cox (1957). The design required 27 experimental

observations (missions) per subject.

The actual levels of CD were 20, 50, 80, 110, and 140 pieces of clutter per

scan. The actual levels of BSR and CRP were .10, .30, .50, .70, and .90. In the

case of BSR a probability of .30, for example, meant that there was a .30 probability

that a return from a target would be displayed over a set of scans. The visual effect

of a return not being displayed was a larger than usual space between the returns of

a target. With a BSR = .10 it is quite possible that the returns from a target would

never be displayed and, therefore, could not be initiated.

CRP was the probability that a piece of clutter would be replaced by a new

piece of clutter on the next scan. In other words, for CRP = .90, 90 percent of all

cputter in a given scan would be in a different position on the next scan. This

parameter was included to simulate changes in clutter returns due to changing

clutter objects themselves. Variability of CRP was also analogous to changing the

signal-to-noise ratio on an operational radar.

The actual levels of TIR were 1.5, 2.25, 3.0, 3.75, and 4.5 torgets

introduced per minute. Because TIR was a statistically distributed parameter,

these are mean values. The standard deviation for each value was set at 1 .5

with a range of 0 to 10 targets per minute. A mean TIR value = 2.25 ;.idicates that

on the average across scans, 2.25 new airLraft would be introduced into the

surveillance area every minute of the mission.

The actual levels of TV were 300, 800, 1300, 1800, and 2300 knots. This

parameter was also statistical, and these values are means. The standard deviation

selected was 200 knots
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Subjects
Four university seniors made up the subject sample. These subjects had

served in a previous study (Mills and Bauer, in press), and each had accumulated
at least 54 hours of experience on the tasks to be performed. All subjects were

paid volunteers.

Procedure

Subjects completed experimental sessions individually while seated at a

computer terminal. During each session, the immediate computer area in which

the terminal was located was closed off to all other personnel.

A mission was designed to take 44 minutes of real time. Actual mission

times over the simulations varied somewhat due to variations in computer processing

requirements during the mission as a function of, for example, number of operator

errors. Targets were introduced only during the period of 1 to 40 minutes. Missions

were completed at an average of four per week. Only one mission could be com-

pleted per day. All performance data were automatically recorded during a mission.

In the first experimental session of an earlier study (Mills and Bauer, in

press) subjects had been given written instructions which described (a) the general

principles of radar, (b) time compression, (c) the simulation and CRT display, and

(d) the initiation and maintenance tasks. After receiving the instructions, subjects

had completed a 15-minute practice mission. No additional information or practice

was given prior to the start of the present study.

RESULTS AND DISCUSSION

Although a variety of dependent measures were obtained for analysis, for

the sake of brevity this discussion will be limited to three of the most important
2

ones. Th• first is the probability of correct track initiation, P(CI). This variable

measured the operator's capability to detect a targel and perform the ictions required

for track initiation correctly. The proibablity was computed by taking the ratio

<)"I
IA



Mills and Williges 10

of the number of tracks initiated to the total number of targets introduced in the

mission.

The second dependent vatiable was track initiation time, IT. This variable

measured the latency between the time a target was introduced into the operator's

surveillance area and the time a track was initiated on it by the operator. Mean IT

is the average of these latencies across all initiated tracks in a mission and is,

essentially, a measure of the operator's overage detection time and the time it

takes him to perform all three actions required for correct track initiation.

The third dependent variable of interest was the probability of performing

the demand maintenance task correctly. This variable measured the operator's

capability to detect and act upon a track failure. The probability was computed by

taking the ratio of the number of demand maintenances correctly performed divided

by total number of track failures.

All response surface analyses were within-subject analyses of a RSM

central-composite design and used a computer program developed by Clark, Williges,

and Carmer (1971).

Track Initiation Performance

Table 1 presents the complete second-order response surface fits obtained

for P(CI) and mean IT. The multiple regression coefficients for these equations were

0.82 and 0.76 for P(CI) and mean IT, respectively. These equations are the most

important results of this study, because they can be used to predict respnse based

upon various ongineering design inputs.

Insert Table 1 about here

Overall mean P(CI) across all missions and subjects was 0.67 with standard
deviation = 0.24 and range = 0.06 to 1.00. Over'all rean IT was 183.58 second•

with standard deviation = 71.94 and range = 46.15 to 362.68 seconds.

Tables 2 and 3 present the regression analyses of varionr, obtained Lo, tL.h

P(CI) and mean IT surfaces, respectively. These tables indicate that the five

parameters had a major influence on track initiation performance. The results of
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the analyses of variance also suggest that the IT response variable was mole sensitive

to the parameters and their interactions than P(CI). This is not suiprising in that

P, i) is primarily a function of absolute detection, whereas IT is a function of

both the time to detect a target and the time to perform correct initiation actions.

Insert Tables 2 and 3 about here

Another result of the analysis of variance was that the linear component

main effect of target velocity made relatively little contribution to P(CI) response

variability. However, the contribution of TV x TV (quadratic component) was

significant (p < .05). In the case of mean IT both linear and quadratic component

of target velocity were statistically significant (p < .01). As will be shown more

clearly below, the quadratic effect was the result of on improvement in response

as target velocity was increased to a threshold value. Beyond this value, further

increases in target velocity no longer yielded response improvement.

The effects of blip/scan ratio and clutter replacement probability were

of special interest, because they had not been investigated previously. The anal: 5es

in Tables 2 and 3 show that both BSR and CRP linear components were statistically

significant (2 < .01) an,1 that BSR was the largest contributor to initiation performance.

Furthermore, these parameters were involved in interactions given in Table 3.

This observation in conjunction with the fact that the remaining three parameters

had previously been shown to affect initiation performance (Mills and Bouer, 1971)

demonstrates once again the utility of the RSM central-composite design.

The fact that many interactions did not achieve statistical significance does

not necessarily mean that these higher-order terms do not contribute to piedlction. The

statistical test merely demonstrates that given the particular set of partial regression

weights, some of these weights are reliable predictors. The higher-order terms may

be correlated; therefore, the individual weightings of these predictors may change

if terms are eliminated from the equations. Systematic procedures are needed foi

eliminating those terms which do not contribute to the multiple regression coefficient.

i
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Tables 2 and 3 aiso indicate that the overall regression was significant (p < .01)

as well as the subject effect (p < .01). The significant subject effect suggests that

there were reliable individual differences betweer, subjects. These differences,

however, are orthogonal to the regression and have no effect on the prediction

equation.

The significant lack of fit (E < .01) obtained for IT in Table 3 suggests that

a higher-order fit may be required to develop a more accurate IT response surface.

The nonsignificant lack of fit (E > .05) for P(CI) in Table 2 suggests that the second-

degree fit is adequate. This is further supported by the small F ratio obtained

(0.40). In the case of both variables, the lack of fit for linear (first-order) regression

was statistically significant (p< .01).

Figures 2 and 3 are equal response contoui plots for P(CI) and IT, respectively.

These plots can aid in interpreting the direction and shape of the functions of the

effects indicated in Tables 2 and 3. (The influence of parameter interactions is

indicated by the curvilinearity of the contours.)

Insert Figures 2 and 3 about here

The effects of each paramuter on P(CI) are presented in Figure 2. Note the

change in response as BSR and TIR are varied along the axes. To evaluate the effects of

CRP, it is necessary to compare Figure 2a, where CRP = .10, with Figure 2b, where

CRP = .90. Although there is un area in Figure 2a where the P(CI) is 1 .0, no such

area exisrs in Figure 2b, indicating that the P(CI) was lower when CRP was increased.

CD had a similar effect on P(CI). Note the decrease in the area of P(CI) = 1 .0

* from Figure 2c to Figure 2d and from Figure 2e to Figure 2f. Although the linear

effect of TV on P(CI) was statistically nonsignificant (t > .05), the pattern of its

effect is interesting. A large performance degradation occurred as TV was decreased

from 1300 to 300 knots (compare Figure 2a with Figure 2c), but little change in P(CI)

occurred when TV was increased from 1102 to 2300 knots (compare Figure 2r_ with j
Figure 2e).

I I " I 1 I I'-I - -- - . . . - ..... .



I2
Mills and Williges 13

Similur comparisons can be made using IT contours. 1T response va,red with

changes in the values of BSR and TV across the axes (see Figures 3a and Figure 3b).

In addition, increasing TIR degraided the IT response as shown in Figure 3a and Figure

3b. In Figure 3a the best available IT surface is for IT = 0.0 seconds; whereas in

Figure 3b the best surface has increased to IT : 90 seconds. It is also interesting to

note that the best surface contours, such as the IT = 0.0 contour in Figure 3a, imply

on optimal TV in the area of 1500 knots.

When making these comparisons one should keep in mind that the functions

are nonlinear, and their slopes are varying. Thus, interpretation is quite general.

The important point is that contours can be obtained using these surface equations

for any desired set of engineering values of input parameters.

A thorough examination of contours such as those in Figures 2 and 3

yields a general area of response optimality for P(CI) and IT. The parameter values

are TV=1300; CD=20; CRP= .5; 1.5- sTIR.< 2.7; and .815 BSRi 1.0. The area

of response optimality could conceivably be specified more exactly using partial

differentiation of the surface equations. However, the problem is a difficult one

requiring that parameters be confined to their experimental ranges. Furthermore,

the major purpose of this study was not to seek an optimum response. If the experimenter

is interested in systematically determining an optimum, the full range of response

s face methodology procedures, such as method of steepest ascent, should be

used. (See Cochran and Cox, 1957, for a more complete discussion.)

Track Maintenance Performance

Examination of the data obtained from the maintenance task, particularly

that of demand maintenance, indicates that the subjects tended to drop the task and

I concentrate on the initiation task. As a result, the obtained response surface

equation for the probability of correctly performing demand maintenance yielded a

I multiple regression coefficient of 0.44. This equation could be expected to

I

101

116
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account for only 19.36 percent of the variability in response. The overall probobility

of performing a demand maintenance was 0.29 w;th standard deviation :- .29 and

range = 0.0 to 0.96.

The failure of subjects to perform the maintenance task consistently could

have resulted from several problems. First, subjects may have found the integration

of both initiation and maintenance tasks too difficult in this study. However, it

should be remembered that the subjects had considerable experience at the start

of the study. It would seem reasonable to expect that they could perform both

tasks, at least on the easier missions. Two additional possible explanations are

that the instructions failed to emphasize the importance of the maintenance task

satisfactorily or that the subjects were not motivated. Regardless of which of these

possibilities tray have occurred, further investigation of the maintenance task

with greater experimental control over subjects is needed.

CONCLUSIONS

This study indicates that surveillance operator perform-nnce varies as a

function of a complex set of system parameters. To demonstrate this fact and

to derive the necessary expressions describing the existing relationshios,

a RSM central-composite design was used. The utility of this approach was

demonstrated in that it provided for efficient data collection, and the observations

"obtained from the response surface equations do describe complex relationships

among the five parameters investigated.

However, further investigation is needed. Subjects failed to integrate

the very important maintenance task. This fact most surely will introduce some

error in operational generalizability of the response surfaces developed to describe

initiation performance, because real operators rarely perform only a single task.

In addition, an examination of the predictive validity of these response surface

equations is required. Such an examination, if positive, wou.ld not only demonstrate

the predictive validity of the equations, but also would povlde f1urther evidence

102



supporting the utility of the RSM central-composite design approach in developing

general purpose prediction equations.

.no
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FOOTNOTES

The observation (0, 0, 0, 0, 0) was used only once in +he analyses as

suggested by Clark and Williges (1972).

2 A complete presentation of the results obtained For all dependent variables

measured will be available in a later Aerospace Medical Research

Laboratory Technical Report, in press.
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TABLE i

Second-Order Multiple Regression Prediction Equations for Probability Correct

Track Initiation, P(CI) and Mean Track Initiation Time, IT

P(CI) .293 + 2.193 BSR - .023 TIR - .303 CRP - .002 CD

* .0009 TV - 1 .285 BSR x BSR - .128 BSR x TIR + .290 BSR x CRP

* .0002 BSR x CD + .0002 BSR x TV - .004 TIR x TIR

t .032 TIR x CRP - .0002 TIR x CD + .00003 TIR x TV

- .090 CRP x CRP + .0002 CRP x CD - .00002 CRP x TV

+ .00001 CD x CD - .0000004 CD x TV - .000001 TV x TV

IT 409.18 - 237.20 BSR - 1.34 TIR + 128.80 CRP - .80 CD

- .23 TV - 221.59 BSR x ,SR + 59.77 BSR x TIR - 195.68 BSR x CRP

+ .80 BSR x CD + .09 BSR x TV - 2.31 TIR x TIR

+ 18.78 TIR x CRP + .22 TIR x CD + .002 TIR x TV

+ 102.36 CRP x CRP - .03 CRP x CD - .01 CRP x TV

- .001 CD x CD + .0002 CD x TV + .00005 TV x TV

where BSR = blip/scan ratio

IR = target introduction rate

CRP = clutter replacement probability

CD = clutter density

TV = target velocity

I167
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TABLE 2

Second-Order Regression Analysis of Variance Summary Table fur Probability of

Correct Track Initiation

Source df MS F

Regression (20) 2.13 x 10-1 22.74**

t Blip/Scan Ratio (BSR) 1 3.34 356.81"**

Target Intioduction Rate (TIR) 1 2.72 x 10-1 29.05**
-2

Clutter Replacement Prubability (CRP) 1 9.69 x 10- 10.35**

Clutter Density (CD) 1 1 .45 x 10- 15.48"*

Target Velocity (TV) 1 3.01 x 10-4 0.03
-1I

BSR x BSR 1 1 .69 x 10 18.06**
-2

BSR x TIR 1 2.36 x 10- 2.52

BSR x CRP 1 1. 4 7 x 10-2 1.57

BSR x CD 1 7.66 x 10- 0.01

BSR x TV 1 3.47 x 10-2 3.70

TIR x TIR 1 2.64 x 10-4 0.03

TIR x CRP 1 1.50x 10-3 0.16

TIR x CD 1 1.91 x 10-3 0.02

TIR x TV 1 8.79 x 10- 0.94
-4

CRP x CRP 1 8.27 x 10 0.09

CRP x CD 1 1.27 x 10-4 0.01

CRP x TV 1 2.64 x 10- 4  0.03

CD x CD 1 5.44 x 10-3 0.58
"CD x TV 1 1.90x 10-3 0.20

TV x TV 1 3.85x 102 4.11"

Residual (87) 2.41 x 10-2

Subjects 3 4.49 x 10"1 47.92 *

Lack of Fit 6 3.73 x 10-3 0.40

SReplications a 78 9.36 x 10-3

Total (107) _

a Error term used in F tests

* E< .05
*2< .01
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TABLE 3

Second-Order Regression Analysis of Variance Summary Table for Mean Track

Initiation Time

Source df MS F

Regression (20) 16128.37 16.51*"

Blip/Scan Ratio (BSR) 1 144726.40 148.11**

Target Introduction Rate (TIR) 1 33783.38 34.57*v,

Clutter Replacement Probability (CRP) 1 12397.62 12.69**

Clutter Density (CD) 1 12206.09 12.49 "

Target Velocity (TV) 1 72349.97 74.04**

BSR x BSR 1 5028.17 5.15.

BSR x TIR 1 5143.94 5.26*

BSR x CRP 1 3921.11 4.01*

BSR x CD 1 1457.04 1.49

BSR x TV 1 5414.57 5.544

TIR x TIR 1 107.79 0.11

TIR x CRP 1 507.88 0.52

TIR x CD 1 1516.62 1.55

TIR x TV 1 30.54 0.03

CRP x CRP 1 1072.92 1.10

CRP x CD 1 1.92 0.002

CRP x TV 1 120.64 0.12

CD x CD 1 18.90 0.02

CD x TV 1 494.45 0.51

TV x TV 1 8260.61 8.45"

Residual (87) 2716.26

Subjects 3 38902.58 39.81 *

Lack of Fit 6 7231.68 7.40'*

SReplications 78 977.14
Total (107)

Error term used in F tests

p < .05
* .< .01 1(09
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I LIST OF FIGURES

Figure 1. Representation of a time-exposure photogroph of the CRT display

ti showing one display update during a 20-second mission simulation

period.

Figure 2. Contour plots for probability of correct track initiation.

Figure 3. Contour plots for mean track initiation time in seconds.
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Predictive Validity of Central-Composite Design Regression Equations

ROBERT C. WILLIGES, University of Illinois at Urbana-Champaign, and

ROBERT G. MILLS, Aerospace Medical Research Laboratory, Aerospace

Medical Division, Air Force Systems Command, Wright-Patterson AFB, Ohio

The predictive validity of the Mills and Williges (1972) empirically

derived prediction equations of single operator performance in a simulated

surveillance system was assessed by measuring 16 additional data points on the some

four subjects participating in the original study. Correlations between predicted

and observed performance on 16 points augmented to the design compared favorably with

estimated shrunken multiple correlation coefficients. In addition, the averages of

each of the 16 additional treatment conditions were compared to the 95 percent

confidence interval of the predicted values using the Mills and Williges (1972)

regression equations. The 16 data points were also chosen such that a supplementary

factorial analysis of variance could be conducted on the data. Comparisons were

made between the analysis of variance and the multiple regression analysis. It was

concluded that the Response Surface Methodology procedures for developing overall

prediction equations of human performance demonstrate a high degree of predictive

validity.
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J INTRODUCTION

b A Response Surface Methodology (RSM) central-composite design was used

by Mills and Williges (1972) to develop generalized prediction equations for

3 probability of correct initiation and track initiation latency in a simulated surveillance

system. For example, track initiation performance was predicted by a second-order

"multiple regression equation. One primary consideration in assessing the utility of

such an empirically derived prediction equation is predictive validity. Shrinkage

of the multiple regression coefficient can be expected when the prediction equation

developed on one set of subjects is used to predict performance on a new set of

subjects. Generally, it is advisable to cross-validate the prediction equation before

using it or to estimate the amount of shrinkage in terms of the modified Wherry

procedure (Lord and Novick, 1968; and Herzberg, 1969).

Williges and North (1972) demonstrated that a within-subject multiple

regression prediction equation of video cartographic image interpretability derived

from a RSM central-composite design maintained a multiple correlation with only

slight st.rinkage under cross-validation to a new set of subjects. The purpose of the

present study was to investigate the predictive validity of the RSM regression equation

from another point of view.

When a sing~le RSM design is used to predict a fairly large surface, the

data points are sparsely distributed across the region of experimental interest.

Conceivably, much of the orderly relationship among sampled experimental points

of the response surface could be overlooked. The present study compared observed

performance at data points not originally sampled in the Mills ard Williges (1972)

study to the performance predicted by the empirical regression equation of that study

in order to assess the predictive validity of the RSM procedure for other points within

the surface.. In nddition, the additional data points were chosen such that a ron-

ventional analysis ef variance could be conducted on the resulting two-level

factorial design without any main effects or interactions confounded.

Ii 11
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METHOD

Subjects

To minimize shrinkage due to subject differences, the same four subjects

used in the Mills and Williges (1972) study participated in this experiment. Each

subject was paid for h:; participation.

Task and Procedures

The experimental task and procedures were identical to those used by Mills

and Williges (1972). Data were collected immediately following the completion of

that study. The reader is referred to the original study for details of the simulated

surveillance system task and the specific experimental procedures.

Design

Coded values of the 27 treatment conditions used in the Mills and Williges

(1972) study are listed in Table 1. Note that the first 16 data points represent a

one-half fractional replicate of a factorial design of the five factors, blip/scan

ratio, target introduction rate, clutter replacement probability, clutter denlsity,

and target velocity. Coded values of the 16 additional data points used in this

study are presented in Table 2. The recoded values were merely linear tran.formation

of the rezyl-world values of the various levels of the five factors provided by Mills

and Williges (1972). The additional data points were chosen such that the first

16 points o riginally investigated (see Table 1) combined with the treotment

conditions of this study would provide a complete 25 factorial design of the five

factors.

Insert Table 1 nnd Table 2 about here

---------------I
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RESULTS AND DISCUSSION

Regression Anal$sis

An estimate of the predictive worth of a multiple regression equation can

be determined from the multiple regression coefficient, which is the correlation

between the observed values of the data and the predicted values obtained from

the regression equation. The square of the multiple regression coefficient, the

coefficient of determination, indicates the percent of variation accounted for

by the regression equation. By correlating the observed responses at the 16

additional data points with the predicted values at these points using the Mills

and Williges (1972) regression equations, the resulting correlation coefficient

provided an indication of the predictive validity of the regression equations. In

addition, this correlation can also be compared to an estimate of the amount of

expected shrinkage of the original multiple correlation coefficient. If the equation

has high predictive validity, the muitiple correlation coefficient should compare

favorably with the estimated shrinkage. The shrunken multiple correlation used as

a comparative baseline for these data was determined by the modified Wherry

formula (Lord and Novick, 1968, and Herzberg, 1969):
R N-I (1

S -("' I)14 N-p- I

where N equals the number of observations used to determine the multiple regression

equation and p is the number of partial regression weights or parameters of the

multiple regression prediction equation.

Table 3 presents correlations for both the probability of rorrect initiation

and the mean initiation latency in terms of the original Mills and Williges (1972)

multiple correlations, RI,. the shrunken multiple correlations, RS, and the

correlation between the predicted scores and the obtained scoreý from this study,

RA It is obvious from the comparison of the values of R-- and R t1 at the correlation
12* 12 SI betwucn the predicted values and the values of the 16 observed dotcu porki r• euch

• ~12:1
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of the four subjects was essentially the some as the predicted shrinkage. Clearly,

these data suggest a high predictive validity of the empirical regression equations.

-- ----------- - - ---

Insert Table 3 about here

Another means of assessing the predictive worth of the regression equation is

to compare the average of the 16 observed responses across the four subjects to

the confidence interval of the predicted values of the Mills and Williges (1972)

regression equations. According to Li (1964) the confidence interval of the

adjusted mean can be constructed using a t distribution and a standard error equal to:

(2)

where a is the replication mean square and I/W = [X.] [c..] IX.] such that
I 'l I

[X.] is the transpose or row vector of the particular levels of the various X values,

[c..I is the inverse of the m + 1 by m + 1 uncorrected sum of squares cross-productII
matrix, and [X.] is the column vector of the particular levels of the various X

values. Note that the standard error changes according to the particular X values

chosen. Because the 16 additional data points used in this study were equidistant

from the center (each consisted of various coded combinations of +1 or -1), each of

these data points has the same standard error. Using Equation 2, the standard error

of the adjusted mean was 0.045 and 14.57 for the probability of correct initiation

and mean initiation latency, respectively.

A comparison of the mean observed values on the 16 additional treatment

conditions with the 95 percent confiden:e interval of the Mills and Williges

(1972) prediction equations is presented in Table 4. In terms of the probability

of correct initiation, all of the obtained probabilities fell within the 95 percent

confidence limit of the prediction equation. On the other hand, only five

values of mean observed target initation latency fell beyond these confidence

limits. These results are certainly compatible with the multiple correlations

122
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which suggest that the probability of correct initiation yielded a slightly better

prediction equation than the mean initiation latency equation. Both equations,

however, appeared to provide relatively accurate and stable predictions.

Insert Table 4 about here

The results of this study are limited to data falling within the range

of values of the originally sampled data. If one attempted to predict beyond the

*2 coded value of any factor, the predictive validity could drop markedly,

because no attempt was made to measure such trends in the original central-

composite design. If, on the other hand, prediction is restricted to within the

±2 coded value, these data support the contention that the predictive validity

is high.

Analysis of Variance

Because the additional 16 data points of this study were chosen to complete
25

a factorial design, a 2 within-subject analysis of variance could be conducted on

both the probability of correct initiation and the mean detection latency. The

significant effects for both the analysis of variance of probability of correct

initiation and mean initiation latency are summarized in Table 5.

Insert Table 5 about here

Two major difficulties arise when one attempts to compare the results of

the analysis of variance with the multiple regression analysis. First, each analysis

was addressed to somewhat different experimental questions. The regression equation

was directed toward determining a functional relationship among various independent

variables and establishing which of these combinations of independent variables

were reliable in predicting performance on the dependent variables. Analysis of

variance, on the other hand, was addressed to a specific yes-no question; namely,

was performance as measured by a dependent variable reliably different when

'12'3
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observed at different levels of various individual independent variables (main

effects) or at specific levels of certain combinations of independent variables

(interactions).

The second difficulty in comparing the results of the two procedures was that

different data sets were used in the two analyses. The Mills and Williges (1972)

regression analyses were based on a RSM central-composite design that measured

performance at selected treatment combinations across five levels of each

independent variable; whereas, the analysis of voriance included dotto from only

two levels of each independent variable. Consequently, reliable trends appearing

in the regression analysis might be occurring primarily beyond the levels measured

in the analysis of variance. In addition, the second-order regression equations

provided by Mills and Williges (1972) included certain quadratic terms that could

not be measured in the analysis of variance design because only two levels were

used. On the other hand, the analysis of variance demonstrated certain significant

third- and fourth-order linear interactions that could not appear in the second-

order regression equations.

Where comparisons could be made between the two analyses, the results

were consistent. Both analyses included linear main effects and linear by linear

two-way interactions. All of these significant effects resulting from the analysis

of variance were also significant predictors in the Mills and Williges (1972)

prediction equations. Moreover, the direction of the effects was the same. For

example, as blip/scan ratio increased, its linear component significantly increased

the probability of correct initiation and decreased the mean latency of track initiation

according to the Mills and Williges (1972) prediction equations. Likewise, the

significant main effect of blip/scan ratio in the present analysis of variance

demonstrated a higher ?robability of correct initiation and a lower mean latency

of target detection as blip/scan ratio increased from the -I level to the i-I level.

If the intention of the experimenter is to predict functional relationships, the

regression eqciation is nore useful than the traditional analysis of variunce even

though the results were compatible.
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CONCLUSIONS

It appears that adding points to complex RSM central-composite designs

so that a 2K factorial design exists is a useful procedure for assessing the

p. ,-dictive validity of the multiple regression prediction equations as well as

allowing calculation of a supplementary factorial analysis of variance on the

data. The measure of predictive validity obtained from this study by correlating

observed performance on the 16 additional data points with the predicted

performance and the results of the cross-validation data provided by Will ;es and

North (1972) provide support for the contention that the RSM central-composite

design is an efficient way to generate relatively stable and valid prediction

equations of human performance.
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TABLE 1

Coded Data Points of the RSM Central -Composite Design Used in the Mils and

Williges (1972) Study

STarget Clutter
Treatment Blip/Scan Introduction Replocement Clutter Torget
Condition Ratio Rate ProDensit Velocit

I -1 1--1 -l-1 1

2 1 "1 --1 --1 -1

3 -! 1 -1 -1 -1

4 1 I -1 -1 1

5 -I -I 1 -I -I

6 1 -1 1 -11

7 -1 1 1 -I 1

8 1 1 1 -1 -1

3I

9 -1 -1 -1 1 -1

101 1 1 1

I11 -1 1-

12 1 1-1I1

13 -1 -111I

14 1 -1 1 1 -!

15 -1 1 1 1 -I

16 1 1 1 1 1

17 -2 0 0 0 0

18 2 0 0 0 0

19 0 -2 0 0 0

- 20 0 2 0 0 0

21 0 0 -2 0 0

22 0 0 2 0 0

23 0 0 0 -2 0nAA.ý 0 0 0 2 0

25 0 0 0 0 -2

26 0 0 0 0 2

27 0 0 0 0 0

12S
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TABLE 2

"Additional Data Points Added to the Mills and Williges (1972) Study to Complete

the 25 Fuctorial Design

Target Clutter
Treatment Blip/S~an Introduction Replacement Clutter Target
Condition Rato.HoRat._.e Probabiit Density Ve oc•ty

1 1 1 1 1 -1

2 -1 1 1 1 1

3 1 -1 1 1 1

4 -1 -1 1 1 -1

5 1 1 -1 1 1
6 -1 1 -1 I -1

7 1 -1 -1

8 - - -1 1
9 1 1 1 I1 1

10 -1 1 1 -1 -1
11 1 -1 1 -1 -1

12 -1 -1 1 -1 1

13 1 1 -1 -1 -1

14 -1 1 -1 -1 1

15 1 -1 -1 -1 1

16 -1 -1 -1 -1

1i12
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TABLE 3

Multiple Correlation Coefficients

Predictive

Dependent Variable Original R Shrunken R Validity

1S R 12

Probability of Correct
Initiation .818 .771 .751

Mean Initiation
Latency .760 .693 .712

4
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TABLE 4

Comparison of Mean Observed Probability of Correct Initiation and Initiation

Latency to 95 Percent Confidence Interval of Mills and Williges (1972) Prediction

Equations

95 Percent 95 Percent
Confidence Confidence

Mean Observed Interval of Mean Observed Interval of
Treatment Probability of Prediction Initiation Prediction
"Condition Correct Initation Equation Latency Equation

1 0.75 0.69 ± .09 162.31 210.62 " 29.14

2 0.36 0.34 ± .09 204.33 225.75 ±. 29.14

3 0.93 0.87 ± .09 103.68 117.38 t 29.14

4 0.54 0.46 ± .09 229.83 272.65 29.14

5 0.77 0.78 ± .09 141.02 179.96 ± 29.14

6 0.47 0.45 ± .09 239.39 259.71 29.14

7 0.91 0.90 ± .09 102.88 137.35 ± 29.14

8 0.52 0.49 :t .09 170.34 159.95 : 29.14

9 0.81 0.85 ± .09 120.91 131.27 - 29.14

10 0.42 0.45 ± .09 247.96 278.01 ± 29.14

11 0.88 0.91 ± .09 137.57 136.00 29.14

12 0.52 0.46 ± .09 143.37 192.19 29.14

13 0.80 0.79 ± .09 142.44 170.17 + 29.14

14 0.49 0.53 ± .09 184.98 167.44 ± 29.14

15 0.94 1.00 ± .09 89.40 79.50 29.14

16 0.63 0.62 ± .09 204.22 228.50 ± 29.14

] 1.81

f
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TABLE 5

Summary of Significant F Ratios Resulting from Analysis of Variance of Probability j
of Correct Initiation and Mean Initiation Latency 1

Dependent Variable

Probabil itty of Mean
Effect df Correct Initiation !nitation Latency

Blip/Scan Ratio (BSR) 1, 3 45.26** 35.94*

iarget Introduction Rate (TIR) 1, 3 NSa 31.72*

Clutter Replacement Probability (CRP) 1, 3 93.12** 35.76**

Clutter Density (CD) 1, 3 25.16" NS

Target Velocity (TV) 1, 3 NS 30.83*

BSR x CRP 1, 3 19.55" NS

BSR x TV 1, 3 18.90* 13.42*

TIR x CRP x TV 1, 3 NS 11.40*

TIR x CD x TV 1, 3 NS 25.36*

CRP x CD x TV 1, 3 12.28* NS

BSR x TIR x CD x TV 1, 3 NS 13.50*

BSR x CRP x CD x TV 1, 3 NS 10.15*

TIR x CRP x CD x TV 1, 3 NS 11.96*

aNS nonsignificant, p> .05

* 2_< .05

* < .01

I
I_

|I_•
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